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Abstract The blocks programming community has been preoccupied 
with identifying syntactic obstacles that keep novices from learning 
to program. Unfortunately, this focus is now holding back research 
from systematically investigating various technological affordances 
that can make programming more accessible. Employing approaches 
from program analysis, program visualization, and real-time 
interfaces can push blocks programming beyond syntax towards the 
support of semantics and even pragmatics. Syntactic support could 
be compared to checking spelling and grammar in word processing. 
Spell checking is relatively simple to implement and immediately 
useful, but provides essentially no support to create meaningful text. 
Over the last 25 years, I have worked to empower students to create 
their own games, simulations, and robots. In this time I have 
explored, combined, and evaluated a number of programming 
paradigms. Every paradigm including data flow, programming by 
example, and programming through analogies brings its own set of 
affordances and obstacles. Twenty years ago, AgentSheets combined 
four key affordances of blocks programming, and since then has 
evolved into a highly accessible Computational Thinking Tool. This 
article describes the journey to overcome first syntactic, then 
semantic, and most recently pragmatic, obstacles in computer 
science education.  

1.  Introduction: Programming is “hard and 
boring” 

The statement “programming is hard and boring” made by a 
young girl when asked what she was thinking about 
programming approximately 20 years ago, does not suggest a 
workable trade-off but instead a heartbreaking lose-lose 
proposition. Disappointingly, a recent report by Google [1] 
exploring why women do not choose Computer Science as a 
field of study listed the top two adjectives describing women’s 
perception of programming as “hard” and “boring.” These 
persisting concerns can be interpreted as a two-dimensional 
research space called the Cognitive/Affective Challenges 
Computer Science Education space [2] (Figure 1). The “hard” 
part is a cognitive challenge requiring programming to become 
more accessible. The “boring” part is an affective challenge 
requiring programming to become more exciting. In other 
words, the big question is how does one transform “hard and 
boring” into “accessible and exciting?”  

The research described here is my 20-year journey through 
the Cognitive/Affective space. In the lower left of this space is 

the “compute prime numbers” using C++ and Emacs activity 
which, by the vast majority of kids, is considered to be hard 
and boring. In the upper right corner is the elusive holy grail of 
Computer Science education providing activities that are easy, 
or at least accessible, and exciting. This journey started in the 
lower left corner and is gradually moving towards the upper 
right corner. The path of this journey is not straight. It includes 
setbacks and detours. Also, while progress has been made, the 
journey is far from over.  

 
Figure 1.  The Cognitive/Affective Challenges Computer Science 
Education Space. 

To explore the affective challenge (Figure 1, horizontal axis) 
and better understand the reasons why kids would, or would 
not, want to program, the first question is “What would kids 
really want to program?” Traditional introductions to 
programming based on examples such as computing prime 
numbers are not particularly compelling to most kids. I have 
developed the Retention of Flow instrument [3, 4] to actually 
measure motivation. This instrument was applied to our 3D 
Frogger Hour of Code tutorial and showed that a large 
percentage of kids want to and can build games even with very 
limited time [5]. But what if kids could program games, robots 
and maybe even simulations? A key to overcome affective 
challenges and broaden participation with respect to gender 
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and ethnicity is the support of creativity, ownership and social 
computing [6]. To better understand the rationale behind 
AgentSheets, it may be helpful to travel back in time to clarify 
what it was supposed to be used for.  

I was fascinated by the affordances of spreadsheets. A 
simple grid based structure, containing numbers and strings, 
combined with a formula language resulted in the awesome 
power to enable an unparalleled fleet of end-user programmers 
[7] to create sophisticated computational artifacts. These 
artifacts, in turn, were dealing with an extremely rich set of 
problems ranging from somewhat dry business applications 
such as tax forms to highly entertaining topics such as games. 
What turned gradually into an obsession with grids was 
nourished even further with events taking place around the 
same time.  

In 1988, as a beginning PhD student, I was in charge of 
helping scientists to use the Connection Machine (CM2), an 
intriguing looking, massively parallel supercomputer with up 
to 65,536 CPUs connected up as a 12-dimensional hypercube. 
The SIMD architecture of the Connection Machine 2 (CM2) 
was perfect to compute solutions to problems that can be 
reduced to cellular automata [8] or Mandelbrot sets in real 
time. However, even the intriguing look – a huge black cube 
with a massive panel of wildly blinking red LEDs featured five 
years later in the movie Jurassic Park – could not overcome 
difficult programing obstacles. The scientists of the National 
Center for Atmospheric Research (NCAR) that I worked with 
had concrete needs to run sophisticated weather models. At 
first sight the CM2 appeared to be a dream come true. 
Unfortunately, it was not clear to the scientists how they would 
benefit from a 12-dimensional hypercube. But perhaps even 
more of an obstacle was that the programming models they 
were used to (most of the models they had at the time were 
written in Fortran) did not map well onto the *Lisp-based 
programming model featured by the CM2. This mismatch was 
not limited to the tasks attempted by the NCAR scientists. In 
1994, Thinking Machines, the organization behind the 
Connection Machines, went out of business.  

While the CM2 and *Lisp did not become commercial 
successes, they helped to shape a new parallel mindset to think 
about problems differently. AgentSheets did not attempt to 
replicate the 12-dimensional hypercube topology of the CM2, 
but it did create a highly usable 3-dimensional 3D abstraction 
based on rows, columns, and stacks. Similarly, StarLogo [9], 
which also came into existence as a *Lisp prototype on the 
CM2, also became an end-user modeling environment for 
parallel processes. 

Another milestone in my obsession with grids was the 1989 
game SimCity. In my mind, the computational notions intrinsic 
to spreadsheets, cellular automata, and SimCity-like games 
started to fuse into a single massively parallel, visual, end-user 
programmable computation idea that became AgentSheets. 
Each idea had its own affordances and obstacles. My goal 
became to create a framework that could become a synergetic 
combination overcoming one idea’s obstacle with another 
idea’s affordance. For instance, allowing spreadsheet cells to 

contain animated icons similar to the ones found in SimCity, 
rather than limiting the content to text, could enable end-users 
to create more exciting applications such as games and 
simulations. Cells could contain programmable objects, called 
agents. These agents could do much more than just computing 
numbers. They could move around, change their appearance, 
interact with the user through keyboard and mouse commands, 
play sounds, use text to speech, react to voice commands, and 
many more things. Cells could contain multiple agents that 
could be stacked up. The grid containing these agents became 
the AgentSheet (Figure 2). 

 
Figure 2.  An AgentSheet is a grid containing agents with states in-
cluding depictions. 

Experimenting with agents representing objects such as 
people, animals, building, wires, switches, bulbs, pipes, 
buildings, roads, and cars, it became clear that there was a vast 
universe of exciting applications that could be built with 
AgentSheets (Figure 3). The target audience of AgentSheets 
had shifted from scientists to children. The main reason for this 
shift was that the exploration of the cognition of computing 
required untainted minds. In contrast to the children, the 
scientists had strong preconceptions on the very nature of 
computation based on their experiences with current 
programming languages such as Fortran. I felt that if I wanted 
to explore the cognitive challenges of programming then I 
should start with an audience that did not have any 
preconceived notions of programming flavored by previous 
programming experiences. My research platform was based on 
Common Lisp, a language that is highly malleable for creating 
new programming languages. The programming language I 
designed, AgenTalk, was an object-oriented programming 
language including Lisp-style syntax to express the behavior of 
agents. AgenTalk was clearly powerful enough to build a huge 
variety of applications including SimCity-like games, agent-
based simulations, cellular automata and even numerical 



 

applications such as spreadsheets. Unfortunately, yet not very 
surprisingly in hindsight, AgenTalk was too difficult to 
understand even for the many eager children who wanted to 
create their own games. 

 
Figure 3.  AgentSheets Example applications. 

To make programming more accessible and exciting [10], it 
is necessary to understand complex interactions between 
affective challenges and cognitive challenges. Kids may be 
quite excited to build a game, simulation, or robot, but if the 
tools are too complex then there is a good chance kids will give 
up because the return on investment is not clear. AgentSheets 
had turned into a simple but quite promising game and 
simulation authoring tool. However, AgentSheets was in dire 
need of a more accessible end-user programming approach that 
addressed cognitive challenges. Cognitive challenges can be 
broken down into three main obstacles: 

1. Syntactic: is about the arrangement of programming 
language components into well-formed programs.  

2. Semantic: is about helping users with the 
comprehension of the meaning of programs.  

3. Pragmatic is about practical concerns of programming 
languages, including the comprehension of programs in 
the context of specific situations.  

At that time it was not at all clear to me that what I initially 
considered just a minor syntactic challenge should keep me 
busy for the next twenty years. In my initial obsession with the 
syntactic obstacle, it took me a long time to recognize, let alone 
to overcome, the semantic and pragmatic obstacles. 
Unfortunately, too much of the current research and 
development of blocks programming is still focused on the 
syntactic level of challenges. My aim in this paper is to 
strongly encourage blocks programming researchers to shift 
away from syntactic towards semantic and pragmatic 
programming challenges. In my projects, this shift in emphasis 
has been buttressed by some longitudinal research that 
unfolded continuously over 20 years, from informal 
observations in small afterschool programs to large scale 
national and even international implementations, including the 
use of sophisticated evaluation instruments. In this paper, I 
share the lessons that I’ve learned in my journey, with the hope 
that they will be useful in other projects.  

This paper contains six more sections. Section 2 explores 
syntactic obstacles through the lens of the AgentSheets genesis. 
Section 3 defines four key affordances associated with blocks 
programming, and Section 4 puts this research into a much 
wider context of related work by considering these four 
affordances. Section 5 looks at techniques to overcome 
semantic and pragmatic obstacles. Section 6 outlines a vision 
for future research called Computational Thinking Tools. 
Computational Thinking Tools support Computer Science 
education by carefully balancing cognitive and affective 
challenges through the support of the Computational Thinking 
Process (see Figure 19 later).  Section 7 concludes the paper.  

2. Syntactic Challenges and Beyond 
Before I settled on the current form of drag-and-drop blocks 

programming for AgentSheets, I explored a number of 
programming paradigms to overcome syntactic obstacles. 
These obstacles are rooted in the simplicity of creating a 
syntactically wrong program [11]. Being, for instance, just 
“one semicolon away from total disaster” with many traditional 
programming languages can be the source of extreme 
frustration, particularly for novices. This section illustrates 
syntactic obstacles by briefly discussing some of the 
milestones of AgentSheets transitioning from text based 
programming to blocks programming.  

The first approach to overcome syntactic obstacles in 
AgentSheets was rooted in graphical rewrite rules [12-14]. 
Initially, AgentSheets [15] was built with a text-based object-
oriented extension of Common Lisp called OPUS [16]. A Zipf 
distribution analysis [17] of OPUS methods used in 
AgentSheets project revealed that most of the methods used 
were about making agents move, e.g., a car moving on a road, 
or changing their appearance, e.g., a person changing from a 
happy to a sad face. This analysis discovered power laws in 
natural language word frequency similar to the frequency of 
tools used by a blacksmith [18]. The distribution suggested that 
graphical rewrite rules [12-14] would be a good match because 
they support the most frequent uses of actions (movement and 



 

change) well. Moreover, by combining graphical rewrite rules 
with programming-by-example mechanisms, these rules could 
be automatically generated to circumvent any kind of syntactic 
obstacle. For instance, a train could be programmed to move 
on a train track simply by selecting it in the scene and moving 
it one step on the track (Figure 4). The first usability test was 
so successful that kids had to be forced to stop and go home 
from the lab. Several iterations of agent-based graphical 
rewrite rules were explored to enable the creation of more 
complex games and simulations. Collaboration between the 
University of Colorado and Apple Computer resulted in several 
prototypes based on the SK8 programming environment [19]. 
The Apple team created a SK8 prototype called KidSim [20], 
which later turned into Stagecast Creator.  

However, an effect that I later described as “trapped by 
affordances” [21] described a shallow learning curve followed 
by a sudden, steep incline. While it had become tremendously 
simple to get started, this approach essentially dead ended at a 
certain level of project complexity when users were trying to 
do more than just having agents move around and change their 
appearance. Graphical rewrite rules were powerful enough to 
create very basic games or animations, but my original goal 
was to create a framework that could also be used for more 
sophisticated games and simulations. Graphical rewrite rules 
fell short of this vision. 

 
Figure 4.  AgentSheets Graphical Rewrite Rule. Double clicking an 
agent would create a local copy of the agent’s situation. Users could 
demonstrate actions such as moving the train on a train track to the 
right. 

A first step towards the exploration of semantics, with the 
goal to overcome the syntactic obstacles experienced with 
graphical rewrite rules, resulted in the creation of semantic 
graphical rewrite rules [22]. Semantic graphical rewrite rules 
enabled users to annotate agents with semantic information that 
could be used to generalize the interpretation of a rule in order 
to avoid huge numbers of permutations. For instance, a 
horizontal piece of road, similar to a wire or a pipe, could be 
annotated to mean that this horizontal symbol represents a 
connector connecting things on the left with things on the right 
and vice versa. AgentSheets can, syntactically and 
semantically, transform agent depictions into all the necessary 
permutations necessary to facilitate generalization. In a 
SimCity-like simulation, the user would only have to draw a 
single horizontal piece of road to have AgentSheets 

automatically generate all the 16 permutations of road pieces 
(straight pieces, turns, T-sections and intersections). The 2^4 
permutations are the result having or not having a connection 
in each direction (up, down, left, right). The transformation of 
the agent depictions applies sophisticated image warping, 
including the bending of icons [23], to the artwork initially 
provided by the user. The transformed icons can be further 
annotated by users. For instance, the dead end road pieces in 
Figure 5 were annotated with road signs. Also, Figure 5 only 
shows 15 our of the 16 road pieces. The road piece connecting 
nothing, i.e., road piece zero, may as well be left off. 
AgentSheets will also apply the semantic equivalents of these 
syntactic transformations to agents, e.g., a horizontal piece of 
road connecting the left with the right, when transformed into a 
vertical piece of road, will connect the top with the bottom. 
The net effect of this idea was that the user would only have to 
draw a single piece of road which could be turned into a 
complex road system, and then program a car with a single rule 
to follow that road. In other words, the design and 
programming of a project that would have taken multiple hours 
to complete could be compressed into a 5-minute task thanks to 
semantics. These ideas are of course not limited to roads but 
apply to any kind of object representing conductivity, such a 
wires conducting electricity or rivers conducting water. 
Programming by analogous examples [24] went one step 
further by allowing users to express analogies such as “a train 
moves on a train track like a car moves on a road” to map 
sophisticated interactions from one context to another. 

  
Figure 5.  AgentSheets can syntactically and semantically bend, inter-
sect, and rotate transform depictions to interpret rules semantically. 

Gradually the notion of blocks as programming language 
components emerged in AgentSheets. In LEGOSheets the 
programming language components became more tangible by 
representing end-user editable [7] rules that users could 
rearrange and modify with direct manipulation [25] interfaces. 
LEGOsheets [22] was an AgentSheets derivative based on 
spreadsheet-like cells interfacing with sensors and effectors. 
The programming language used in LEGOSheets became the 
first visual programming language for the MIT programmable 
brick. The LEGO Company later created the Mindstorm 



 

system based on the MIT programmable brick. LEGOSheets 
rules are associated with effectors such as motors. To express a 
rule, a user creates a spreadsheet-like mathematical formula 
referring to sensors.. Clicking on a sensor adds a symbolic 
reference to the rule of the effector to be programmed.  

The approaches described above reduced syntactic obstacles 
through the direct manipulation of objects, the agents, instead 
of typing in text. Unfortunately, not every operation that agents 
are able to perform could be demonstrated through programing 
by example approaches. A different approach making all the 
operations agents can perform accessible to an end-user would 
be to provide these operations as objects – or blocks – that 
users could explicitly manipulate. These blocks should be 
encapsulated objects providing direct manipulation user 
interfaces [25] facilitating simple end-user editing. That is, 
users should be able to move them around, duplicate them, and, 
if they represent operations, control all of their parameters with 
highly accessible user interfaces. For instance, a color 
parameter should not be a piece of text that can be mistyped 
but should be a type interactor, called color, bringing up a 
color selection widget enabling users to pick a color from a 
color palette. The idea of programming language primitives as 
blocks already existed. Blox Pascal [26], for instance, already 
used the notion of puzzle pieces (Figure 6) to represent 
syntactic relationships between primitives. 

 
Figure 6.  Puzzle shaped Blocks in 1984 Blox Pascal. 

Under the title of Tactile Programming [27], AgentSheets 
introduced a form of blocks programming in 1995 (Figure 7) 
by combining four affordances defined in the next section. As a 
tool providing blocks programming to create games and 
simulations, it made a significant step in moving away from 
“hard and boring” toward “accessible and exciting.” Similar 
block approaches were later found in Squeak eToys [28, 29], 
Alice [30], and ten years later in Scratch [31]. Unlike the 
programing approaches discussed above, blocks programming 
has stayed with AgentSheets for over 20 years now. 
AgentCubes [10, 32-35], featuring innovative 3D end-user 
modeling approaches empowering kids to create their own 3D 
worlds, includes sophisticated parallel execution and animation 
models for blocks programming. AgentCubes online is an early 
Web-based 3D game and simulation authoring tool merging 
end-user 3D modeling [36] with end-user programming. 

Common to these tools are three core principles that shaped the 
creation of blocks programming in AgentSheets back in 1995 
[27]: 

1. Composition: A drag-and-drop-based approach was 
employed to aggregate individual programming 
language primitives, called commands, into a whole 
program. This was perhaps the most evident affordance 
of blocks programming. AgentSheets’ aim was not to 
become a general purpose programming environment 
but a Computational Thinking Tool1 [37]. To that end, 
the puzzle piece idea was replaced with a combination 
of color-coded language primitives, e.g., conditions 
versus actions, and syntactic drag-and-drop feedback. 
For instance, the user would get a clear signal through 
an animated cursor that a condition could not be 
dragged into the THEN part of an IF/THEN statement. 
While dragging a block the mouse cursor turns into a 
green positive indicator when a block fits or into a red 
negative indicator if it does not fit at the current 
location. An important concept that is integral to Tactile 
Programming is that blocks can be composed from any 
source including from websites.  

2. Comprehension: A programming block should be able 
to explain itself to a user, similar to the way that 
Rehearsal World [38] could provide explanations for 
parts of a programming-by-example program. As a 
programming object, a block can establish connections 
to objects in the project, i.e., agents. For instance, users 
can drag actions such as a move (right) action onto a 
frog agent to make it move to the right. This is not an 
act of programming but a process supporting 
comprehension. What does this action do to this agent? 
Likewise, conditions can be tested to learn if they are 
true or false. Explanation implies that every block can 
produce an animated description of what it will be doing 
based on its parameter settings or subcomponents. For 
instance, the move (right) explanation would produce a 
spoken explanation, using text to speech, highlighting 
first the “I move” and then saying, while simultaneously 
making the arrow right parameter blink, “to the right.” 
This would make it very clear how each parameter 
contributes to the precise meaning of a command. 
Explaining an IF/THEN statement would explain all of 
its conditions and actions. Explaining a method would 
explain all of its statements. These ideas are explained 
in section 5.2.  

3. Sharing: Each command is a sharable object with a 
canonical textual representation allowing objects to be 
turned  into text and  text into objects.  Current  versions 

                                                             
1 The original term used was Thought Amplifier, which was not well received. 



 

of AgentSheets and AgentCubes use an XML representation. 
Using some browser exploits – the Web had existed for only 2 
years at the time – any project, any program, any agent could 
be directly shared by dragging it into the AgentSheets Behavior 
Exchange webpage [39, 40] or dragging it out of there. This 
enabled a high agile style of sharing but it was greeted with a 
lot of skepticism in schools, as the practice of easily sharing 
products, particularly with identifiable authors, was not 
compatible with common school practice.  

3. Four Key Affordances for Blocks Programming  
The next section puts the AgentSheets exploration of syntactic 

obstacles into a much wider context of related work relevant to 
end-user programming. Reflecting back now 20 years, the 
Composition/Comprehension/Sharing framework captured im-
portant aspects relevant to blocks programming. However, to 
meaningfully discuss related work, it makes sense to identify a 
minimal set of affordances that need to be provided in order to 
be considered a modern blocks programming system. The notion 

 

 
Figure 7. 1996 Figure with original caption: (1) Comprehension: test the functionality of commands and 
rules by moving them from the programming world or collaboration world into the application world 
(2a) Direct Composition: select commands and compose them into rules. (2b) Composition by 
Example: compose rules by manipulating the application world (3) Share: share with a community of 
users entire simulations, agents, rules and commands through the World Wide Web. 



 

of blocks as representations of programming objects alone is 
not sufficiently discriminatory as blocks can be found in most 
visual programming languages. The value of using the notion 
of blocks programming as a mere synonym for visual 
programming would not be clear.  

When I review the beginnings of AgentSheets in the context 
of other visual programming work that was going on at the 
time, four affordances stand out as being particularly 
important. I may not even have recognized their full 
importance at the time, but do so in hindsight. These 
affordances have turned out to be key aspects of today's blocks 
programming environments. As part of the Compo-
sition/Comprehension/Sharing framework, sharing is a 
powerful idea [39, 40], with important consequences for the 
cognitive as well as the affective challenges, but it does not 
have to be part of the minimal requirements for blocks 
programing languages. AgentSheets combined these four key 
affordances into a highly accessible visual programming 
paradigm. These affordances continue to be at the core of 
popular blocks programming languages [41] such as Scratch 
[31] and Blockly [42]. 

1. Blocks are end-user composable. Simple end-user 
manipulation techniques, frequently drag-and-drop style 
manipulations, are used to compose blocks into 
programs represented as linear, multidimensional, 
hierarchical or other kinds of organizations. The block 
manipulation can be based on two- or three-dimensional 
mouse, gesture or virtual reality interfaces. To be usable 
by end users, the composition process must include 
some scaffolding mechanisms supporting the 
syntactically correct composition of blocks into 
programs. Examples of such scaffolding mechanisms 
include context aware menus (e.g., Alice), animated 
cursors (e.g., AgentSheets/AgentCubes), animated 
insertion points, enabled/disabled screen regions, and 
block shapes/colors (e.g., Scratch) suggesting syntactic 
compatibility.  

2. Blocks are end-user editable. As interactive objects, 
blocks are not just static entities such as icons on a 
computer screen or physical objects such as plastic 
cards but dynamic objects that contain end-user editable 
information. To minimize syntactic challenges, blocks 
will typically employ direct manipulation interfaces to 
implement edit operations. For instance, a color value 
would become end-user editable by using a color picker 
(e.g, AgentSheets and eToys) to select a color from a 
palette instead of using an editable text field to enter 
color values. 

3. Blocks can be nested to represent tree structures. 
Blocks may be composed recursively into tree structures 
to contain blocks, which, in turn, may contain more 
blocks. In AgentSheets, a method block contains rule 
blocks, containing IF and THEN blocks, containing 
condition and action blocks. In Scratch loops contain 
instructions.  

4. Blocks are arranged geometrically to define syntax. 
The semantics of block combinations emerges from 
where blocks are connected by having the blocks touch 
each other directly or be placed in particular positions 
relative to one another (block geometry) rather than 
being linked indirectly by additional explicit graphical 
connectors like lines (block topology). The definition of 
geometry may be aided by jigsaw puzzle appearance 
like in Blox Pascal [26] or Scratch, but does not have to 
be. This distinguishes modern blocks languages from a 
style of visual languages that Lieberman calls “icons on 
strings” [43], epitomized by dataflow languages such as 
LabView.  

Particularly when keeping an eye on educational 
applications, the “end user” aspect of these affordances is 
incredibly important for modern blocks programming 
languages. With the one common goal to make programming 
more accessible, blocks programming languages need to 
provide some evidence of efficacy to validate “end user” 
compliance. Minimally, systems should provide evidence of 
end-user usability. In the case of AgentSheets, validation has 
gone much further. Related to cognitive challenges, the 
Computational Thinking Pattern Analysis research instrument 
[44-48] has shown that users, by building games with 
AgentSheets, can acquire important Computational Thinking 
abstractions, which they can later leverage to build scientific 
simulations [49]. Howland has explored similar Computational 
Thinking transfer in the context of the FLIP game-
programming tool [50]. Related to affective challenges, the 
Retention of Flow research instrument [3] has measured 
motivational levels in Hour of Code activities based on 
AgentCubes online and shown that the “Make a 3D Frogger” 
activity has even exceeded motivational levels of high 
production activities such as the code.org Hour of Code Angry 
Birds activity [4]. Finally, but perhaps most importantly for 
educational applications, the Scalable Game Design project 
[51] has shown with large national studies (student n > 
10,000), that teachers can be sustainably trained [52] to use 
AgentSheets and AgentCubes to the point that they can teach 
students to build sophisticated games and simulations.  

4. Related Work 
This section discusses the genesis of modern blocks 

programming languages through the lens of the four 
affordances above, which address the core problem of syntactic 
challenges. In the context of a variety of concrete programming 
languages, the roles of these affordances will become more 
apparent. The notion of blocks as objects to be used for 
programming emerged early on and evolved gradually, raising 
and, to some degree, answering questions such as: What is a 
block, what does it look like, how does it get manipulated by a 
user, how do blocks relate to each other? Most visual 
languages [53], with their aim to make programming more 
accessible, include some notion of blocks.  

The idea of blocks as visual programming components can 
be traced to early interactive computer systems. In 1962, on 



 

one of the first transistor-based computers, a TX-2, Ivan 
Sutherland developed the revolutionary Sketchpad CAD 
(computer-aided design) program to interactively sketch two-
dimensional shapes [54]. Only two years later, also on a TX-2, 
his brother William “Bert” Sutherland employed the idea of 
sketching as the root of a two-dimensional programming 
language [55] implementing an electric circuit metaphor. That 
language was based on data flow and included two-
dimensional components representing mathematical functions 
such as addition and multiplication. These components can 
certainly be considered blocks that were, to some degree, end-
user composable (affordance #1) but the blocks were not 
editable (affordance #2), were not nestable (affordance #3), 
and their semantics did not emerge from the block geometry 
but rather from the explicit connection of blocks. The Grail 
project [56] expanded on this by adding a basic ability to edit 
(affordance #2) blocks through tablet input. Remarkably, for 
that time, input was pen based including letter recognition. 
Later, at a time when through the release of the Apple 
Macintosh mice as user interface devices had just started to 
become more widely available, Minsky already demonstrated 
the use of “finger on screen” gestures [57] as a manipulation 
interface which she used to create a visual programming 
language layered on top of Logo.  

Blocks can represent programming components at syntactic 
and semantic levels. For instance the logic objects in Minsky’s 
system represent AND, OR and NOT gates that feature well-
established semantics rooted in integrated circuits. In this case, 
the shape of a component represents its semantics, i.e., its 
meaning and has nothing to do with its syntax, i.e., how it can 
be combined with other blocks into a well-formed structure. 
An AND gate functions differently from an OR gate and 
everybody with an electrical engineering background is able to 
instantly tell this difference based on the shape of the block. 
The Blox Pascal (Figure 6) system [58], in contrast, was 
perhaps the first system shifting radically from a shapes 
representing semantics to a shapes representing syntax 
visualization model. It employed the notion of jigsaw puzzle 
pieces to present visual clues on how components can be 
combined. In other words, Blox Pascal uses the shape of blocks 
to represent syntax. Most modern blocks programming 
systems, including Scratch, are using the shape of blocks to 
represent syntax.  

This shift from shapes representing semantics to shapes 
representing syntax fundamentally changed the notion of visual 
programming semantics to one where the semantics of 
programs emerged solely on the geometry of blocks 
(affordance #4) and not on the use of explicit graphical clues 
such as lines connecting blocks. In contrast to “icons on 
strings” [43], each modern blocks program consisting of 
connected blocks has a canonical gestalt [59]. In 
AgentSheets/AgentCubes, blocks vertically aligned imply top-
down sequence. Actions in a THEN part of a rule will be 
executed from top to bottom. The geometry of blocks in icons-
on-strings languages is essentially irrelevant. Blocks can be 
placed everywhere and then connected with lines. Of course, 

most programmers will try to strategically position blocks to 
keep connections short and to avoid spaghetti code by 
minimizing the number of lines crossing over each other.  

Affordance #1 (blocks are end-user composable) and 
affordance #4 (blocks are arranged geometrically to define 
semantics) in modern blocks programming languages work 
hand in hand. That is, modern blocks programming languages 
provide manipulation mechanisms including a feedback system 
to support the construction of syntactically correct geometry. 
Blox Pascal-like programming languages employ the jigsaw 
puzzle piece notion to indicate how to properly combine 
blocks. As Glinert [58] and later Lewis [60] indicated, the 
jigsaw approach is limited by lacking flexibility for connecting 
blocks. Each connector can only fit one matching counter 
piece. Polymorphic syntax compatibility is difficult to 
implement with static shapes. Some [58] have suggested 
dynamic shape shifting approaches but without providing 
implementations. Lerner et al. [61] and Vasek [62] have 
implemented polymorphic block connector shapes.  
AgentSheets employs a dynamic cursor approach that shows a 
green positive cursor where blocks can be added and a red 
negative cursor where they cannot. This approach is further 
supported by strategically positioning blocks palettes. In 
AgentCubes, the conditions palette (see later in Figure 12) is 
immediately next to where conditions go and, likewise, the 
actions palette is immediately next to where actions go.  

There are many drag-and-drop programming systems using 
some kind of blocks, but they only implement a subset of 
affordances #1-#4. TORTIS by Perlman [63] was an early 
system that came very close to modern blocks programming. In 
addition to featuring direct manipulation interfaces consisting 
of physical button boxes to control a mechanical turtle, 
TORTIS featured a so-called slot machine for programming. 
Slot machines were boxes representing procedures defined by 
the arrangement of plastic cards. These cards can be considered 
blocks in the sense that they represent program instructions 
such as move forward or turn. TORTIS featured blocks that 
can be composed physically (affordance #1), that have a 
limited sense of nesting (cards could not contain other cards 
but a card could be a placeholder for another box containing 
more cards: affordance #3), and the sequence of program steps 
was determined by their geometry (affordance #4). However, 
instructions were not editable (affordance #2). ChipWits [64] 
was a robot control game providing powerful control flow 
based on graphical instruction tiles to program robots. The tiles 
were drag-and-drop composable (affordance #1), but individual 
tiles were not editable (affordance #2) nor was there a nested 
notion of tiles (affordance #3), and the program control flow 
was determined by explicit arrows and not the geometric 
location of blocks (affordance #4). Logoblocks implemented a 
Logo-based visual programming language to control simple 
robots [65]. Logoblocks did provide blocks that were drag-and-
drop composable (affordance #1), did have nested blocks, e.g., 
the REPEAT block (affordance #3), and featured blocks that 
were arranged geometrically (affordance #4). However, it had 
a limited notion of block editability (affordance #2).  



 

Two systems stand out with respect to blocks that are 
recursive (affordance #3). Boxer, a programming system aimed 
at “nonprogrammers” [66], focused on boxes as nested 
containers of code, data or images. Boxes in Boxer are blocks 
that can be composed through drag and drop (affordance #1), 
can be nested (affordance #3), and are arranged geometrically 
(affordance #4). The only shortcoming with respect to modern 
blocks programming languages was its lack of end-user editing 
(affordance #2). Users could edit the content of a programming 
block, but in order to do so they had to know textual 
programming. Similarly, Janus [67] had a very strong sense of 
recursion. However, it was not focused so much on the 
recursive construction of user created programs but the 
animated execution of recursive algorithms.  

Following AgentSheets, a growing list of modern blocks 
programming languages emerged providing all four 
affordances. In chronological order of their creation, not 
necessarily in order of their publication, some of the important 
systems are briefly listed here. eToys is a blocks programming 
extension to Squeak [29] that emerged in 1997. Around the 
same time the Alice system provided accessible programming 
for kids [30]. Scratch became a popular programming tool for 
creating and sharing animations [68]. Blockly [42], an open 
source blocks programming language, was used in Hour of 
Code tutorials and is now used in a number research projects 
creating custom blocks programming languages.  

Programming by Example (PBE) is the idea that programs 
can be automatically created by observing users manipulating 
worlds instead of writing programs [69]. The notion of blocks 
is somewhat secondary to PBE as, at least initially, the idea 
was that programs that were generated through user 
manipulations should be hidden from users. Some tried to 
avoid the need for explicit program representation by keeping 
PBE demonstrations and resulting programs short. Rehearsal 
World [38] provided a very simple programming-by-example 
approach in which users would demonstrate one step. For 
instance, they could start recording, select a button and then 
describe the action to associate with that button. Others, 
including Halbert [70], explored approaches to make recorded 
programs explicitly available to users. His specific aim was to 
make PBE more useful by enabling users later to add control 
structure to a recorded program. Providing affordances #1 and 
#2, one of the few PBE systems that came close to a modern 
blocks programming language was Pygmalion [71]. It did 
provide the notion of block through its representation of icons 
as placeholders for programs. Users could enter data, typically 
numbers, which then they could operate on through the explicit 
application of operators and record the computation. 
Conceptually speaking, nothing would prevent PBE systems 
now from being combined with modern blocks programming 
languages to provide all four affordances. However, perhaps 
due to the perception that modern blocks programming 
languages are already highly accessible, PBE research appears 
to have lost some momentum particularly for educational 
applications.  

Not qualifying as modern blocks programming languages 
because their semantics do not emerge from the geometry of 
blocks (affordance #4), there are numerous visual 
programming languages based on the icons-on-strings 
approach. The majority of these languages employed 
connections between blocks to express either data or control 
flow. Data flow has been particularly popular. Especially early 
versions of data-flow-based visual programming languages 
tried to aim at a really wide scope of application, proposing 
data flow as a general purpose programming model. Prograph, 
for instance, is a general purpose data flow visual 
programming language including strong typing and other 
properties of object orientation such as multiple inheritance 
[72]. VisaVis [73], employing an implicit type system, 
demonstrated that it was able to express algorithms such as 
Quicksort more compactly than Prograph. Other systems 
developed a more task specific [74] perspective of 
programming. DataVis [75], for instance, was a data-flow-
based visual programming environment helping users to create 
visualizations of scientific data. In spite of their overall limited 
use in Computer Science education, some icons-on-strings 
programming languages are very popular. LabView, for 
instance, is used by many professional programmers working 
on embedded systems and robots [76]. 

Some visual programming languages have experimented 
with different manipulation mechanisms for block composition 
(affordance #1). For instance, the CUBE programming 
environment [77] has proposed a three-dimensional 
programming language to be embedded in a virtual reality 
environment. This would allow users to compose Prolog-style, 
Horn-clause based programs by grabbing, placing and moving 
components in three-dimensional worlds. AgentCubes, the 3D 
cousin of AgentSheets, in contrast, enables users to build 3D 
worlds but it only uses two-dimensional programming.  

Domain-oriented programming and design environments 
[78] employ more abstract blocks including appropriate 
composition approaches (affordance #1). In these 
environments, blocks would not represent the traditional 
computer programming language components such as loops or 
conditional statements but rather components inspired by 
objects known to users in specific problem domains. Similarly, 
the process of composing would often not be perceived as or 
called programming but as a process of design. Construction 
kits, for instance, present users with design components that 
can be assembled at a problem domain abstraction level. The 
Pinball construction kit [78] provides users pinball components 
such as bumpers and flippers to design working pinball 
machines. Similarly, the Incredible Machine [79] provides 
users with design components that they can arrange into Rube-
Goldberg-like puzzles. AgentCubes online provides an even 
wider range in the Consume çè Create spectrum [49] by 
integrating ideas of construction kits with blocks programming. 
AgentCubes online differentiates between play, design, and 
edit mode, providing not only components but also a 
mechanism to design and program these components. For 
instance, in edit mode users can create a SimCity-like world 



 

consisting of components such as roads, buildings and cars. At 
the edit level, users would have to also provide the program to 
express the behaviors of these domain-oriented components, 
such as the cars following roads. At the design level, other 
users could clone a SimCity-like project to design their own 
city, similar to using existing SimCity like games. In contrast 
to the Pinball Construction Kit and the Incredible Machine, 
however, AgentCubes users would still be able to access the 
lower level programming if so desired. This may be useful to 
mod [80] the component’s behavior.  

Domain-orientation is not limited to construction kits but 
includes text as well as visual programming-based languages 
aimed at specific application domains. StarLogo 
TNG/StarLogo Nova is domain oriented towards the end-user 
programming of simulations [81]. Similar to AgentSheets and 
AgentCubes, this domain-orientation manifests itself in the 
support of simulations. Both systems, for instance, scaffold the 
typical simulation operations such as being able to count all 
instances of a class and plot these numbers or export them to 
spreadsheets (see later in Figure 26).  

5.  Shifting Focus to Semantic and Pragmatic 
Obstacles 

Now, after 20 years of experience with designing drag-and-
drop blocks programming languages and conducting large 
scale, national and international teacher training, I can reflect 
on the relevance of affordances and obstacles introduced in 
blocks programming. A key problem of the blocks 
programming community is its preoccupation with syntactic 
affordances and obstacles. The syntactic obstacles of 
programming are quite relevant to novice programmers. Typos 
involving missing or misplaced special characters such as 
semicolons can be the root of deep frustration and may be 
responsible for prematurely terminating the interest of novices 
in programming. However, the approaches that have emerged 
from blocks programming have largely addressed these 
syntactic obstacles. Even traditional text-based programming 
environments have benefited from approaches such as symbol 
completion to manage syntactic obstacles in ways that help 
novices and experts alike. There is a common perception 
among users that programming has not only become more 
accessible but actually is now accessible thanks to blocks 
programming. This is simply not true. An analogy may help. 
Blocks programming overcomes syntactic obstacles in 
programming languages in a way that is similar to how spelling 
and grammar checking overcomes syntactic obstacles in 
natural languages. But just because we have tools such as 
modern word processors, including powerful syntactic tools 
such as spell checking does not mean that we become enabled 
to write meaningful, interesting, and relevant text. In other 
words, if I would instruct a user to “go ahead and write a 
bestselling novel now that you have spell checking” most 
people would agree that spell checking, as a syntactic 
affordance, provides essentially no support towards this 
ambitious goal. The same holds true for blocks programming. 

With the syntactic challenge essentially being resolved, it is 
becoming urgent to dramatically shift research agendas to 
focus on the much harder semantic and pragmatic levels of 
programming languages.  

The following sections describe some of my early 
explorations of semantic and pragmatic affordances that are 
relevant, but are not necessarily limited to, blocks 
programming languages. Importantly, these explorations 
should not be considered end points of investigation but more 
general research directions, including concrete starting points. 
In contrast to syntactic obstacles, some of the semantic and 
pragmatic obstacles are not just incrementally harder to 
overcome, but at some theoretical level may actually be 
impossible to get over in the most general case. For instance, 
the halting problem, which applies to semantic program 
analysis of Turing complete programming languages, suggests 
that there are semantic challenges that are simply undecidable 
in ways that would be impossible to overcome with any kind of 
computing. While this theoretical barrier exists, it does not 
imply the need to give up. Computers have become more 
powerful and more expressive. While faster computers alone 
cannot overcome theoretical barriers, they can enable new 
kinds of user–computer interfaces relevant to programming. 
Employing multiple cores, a computer can now efficiently run 
multiple threads to constantly analyze complete or partial 
programs. Fusing program analysis, program visualization, and 
real-time user interfaces, the powerful combination of 
computer affordances with human abilities can result in 
radically new support mechanisms to make blocks 
programming move beyond syntax. 

My ultimate goal for blocks programming is to reach the 
level of pragmatics described by Webster as “The study of 
what words mean in particular situations.” Blocks are just like 
words in natural languages. Pragmatic support suggests not 
only the notion of blocks executed in the context of other 
blocks, but also of blocks executed in specific situations 
defined by the aggregation of agents/objects comprising 
complex game and simulation worlds. When I program a 
Frogger-like game, what will my frog do when it is in this or 
that situation in the game? The game worlds need to be 
considered part of the programming environment to enable 
these kinds of explorations by the user supported by the 
computer. The following sections outline approaches that have 
been explored to move blocks programming beyond syntax in 
AgentSheets [18, 22, 40, 82-85] and AgentCubes [10, 32-35]. 
As the main tools of the Scalable Game Design curriculum [51, 
86], AgentSheets and AgentCubes include the mechanisms 
described below. They are being used by students around the 
world [87, 88] and have been tested with respect to cognitive 
[47] and affective challenges [3]. 

5.1.  Contextualized Explanations: Support  
Comprehension  

To become more accessible, programs should be able to 
explain themselves. This is relevant to every kind of 
programming, but essential to blocks programming, which is 



 

aimed at novice programmers with little or no programming 
experience.  

One approach to increase the self-disclosure [89] of 
programs is to make programming languages more oriented 
towards natural languages. For instance, AppleScript, a textual 
scripting language for MacOS, was intentionally designed to be 
more readable by avoiding special characters and through some 
degree of verbosity. The relatively high AppleScript readability 
is traded off by the obstacle of actually reduced writability. 
Figure 8 shows a sample AppleScript-generated dialog based 
on this script: 

display dialog "Bad news!" with icon 
stop buttons "Okey dokey"  

Figure 8.  AppleScript generated dialog. 

Blocks programming has additional options to make 
programs more self-disclosable without trading off writability 
for readability. Because blocks are objects on the screen, it is 
quite simple to add static or dynamic annotation features, such 
as tool tips, to programming primitives to explain them. Turkle 
has used the notion of “objects to think with” [90], talking 
about objects in the game world such as the Logo turtle. 
However, blocks programming can extend this notion to the 
programming language itself by making its objects, in other 
words the blocks, also objects to think with. This kind of 
thinking can be supported at three different levels:  

Syntax: At the syntactic level, explanation is limited to 
language structure. For instance, an explanation could reveal 
that a condition is part of an IF statement and should not be 
confused with an action that can be executed in the THEN or 
ELSE part of a statement. However, this information would 
not include attempts to define the meaning of a specific 
condition. In most blocks programming languages, this 
information is captured statically through the visual 
representation of a primitive via a shape (e.g., puzzle piece 
approach [26]) or color and/or dynamically, such as through 
drag-and-drop feedback suggesting compatibility of blocks.  

Semantics: At the level of semantics, explanations are often 
implemented through help functions describing the meaning 
of a block. For instance, when engaging Block Help in Scratch 
to explain the set fisheye effect to 4 command (Figure 9), the 
user gets a semantic response in form of a generic help panel 
including a brief description of the meaning of the command 
and the listing of additional options. Importantly, the 
description is not about the specific form, i.e., the particular 
situation of the actual command in question. It does not 

explain what the “fisheye” effect is or the effect number 4 
means in the context of actual situation, e.g., by applying it to 
an example shape created by the user. 

 
(a) specific command 

 
(b) generic explanation 

Figure 9.  A command and its explanation. 

Pragmatics: At the level of pragmatics, explanations need to 
be constructed for the user from the specific context created 
by the user. That is, pragmatic explanations will have to 
interpret all the parameters of a block to dynamically generate 
an explanation about the settings used by the user. The 
pragmatic explanation is not about that type of block in 
general but about the specific block that was edited by the 
user. The benefit of this context information can be significant 
given that some parameters may be difficult to interpret. Users 
can experiment with parameters in support of comprehension. 
Pragmatic explanations allow blocks to be more compact, as 
they allow the use of compact representations, such as the 
arrow in Figure 10 indicating a direction to look for other 
agents. Experience with more verbose, AppleScript-like, 
representations of blocks in AgentSheets [91] suggested that 
they were appreciated by first time users but not liked by users 
with previous AgentSheets experience. The pragmatic 
explanation in Figure 10 is based on a dynamic tool tip-like 
annotation combined (Mac only) with a text-to-speech 
interface. An explanation produces a sentence based on the 
parameters of the block, annotates parts of the sentence in 
Karaoke sing-along style, and simultaneously makes the 
corresponding parameter blink (e.g., the arrow left cor-
responding to the “to my left” part of the sentence).  

Syntactic, semantic and pragmatic explanations are not 
mutually exclusive. For instance, AgentSheets also has a 
traditional command help system providing generic 



 

information including examples about blocks in addition to the 
pragmatic explanation. Blocks programming aimed at novices 
should provide all three levels of explanations. 

 
Figure 10.  Pragmatic Explanation in AgentSheet. 

Pragmatic explanations should include program context. For 
instance, to understand how a condition is used in context, one 
can select a rule, an IF/THEN statement containing the 
condition. Using the pragmatic explain function will produce 
an explanation for the entire rule including all of its conditions 
and actions but also including potentially implicit aggregation 
assumptions (Figure 11). For instance, by default in 
AgentSheets, all the conditions of a rule need to be true, i.e., 
they are linked by a Boolean AND. The implicit ANDing of 
conditions is made explicit in the explanation text, which is 
read out through text-to-speech interfaces producing sentences 
such as “If <condition 1> and <condition 2> then …”.  As each 
condition or action is explained, it is selected and animated in a 
Karaoke style highlighting each parameter and its 
corresponding text explanation. Rules are tested top to bottom 
and actions are executed top to bottom. The explanation can 
make these kinds of assumptions explicit to a novice user.  

 

Figure 11.  Explanation of an IF/THEN rule making a car fall down 
when there is nothing below the car. 

Syntonic (the projection of oneself into something or 
someone else) explanations can help users to assume the 
perspective of the object to be programmed [92]. Body-
syntonicity, a term suggested by Papert [93], describes 
experiences that are related to one’s knowledge and sense 
about one’s body. In the context of Logo turtle programming, 
Papert surmised that when students can project themselves into 
the turtle they would experience fewer problems with 
programming it. In my work with AgentSheets, I found 
confusion about perspective was often the source of 
programming problems. For instance, when programming a 
collision between a car and a frog in a Frogger-like game, 
students would often put code that was supposed to be in the 
frog into the car and vice versa. A syntonic approach tries to 
compel students to become the frog when they program it and 
to become the car when they program the car. For similar 
reasons, some science teachers introduced role-play games in 
their gym class for the student to experience being the car and 
the frog. I found that some degree of syntonicity could be 
induced by using explanatory language worded in ways 
suggesting to be the object to be programmed. A non-syntonic 

explanation of the condition in Figure 10 could be “This 
condition is true if the agent sees another agent looking like 
this to its left.” The syntonic explanation, in contrast, suggests 
projection of the programmer into the object to be programmed 
by employing terms such as “I” and “my” resulting in “True, if 
I see to my left an agent that looks like this.” 

 
Figure 12.  AgentCubes putting car into first person mode. 

Programming environments can actively support body 
syntonicity through camera perspectives. Alice [30], for 
instance, does this by using coordinate systems that are object-
relative. AgentCubes, as 3D Computational Thinking Tool, 
moves one step beyond the AgentSheets syntonic explanations 
by literally allowing the programmer to assume the perspective 
of agents to be programmed through camera operations. Every 
agent in AgentCubes can be selected and be set into first 
person camera mode. This can be done too in other 3D tools 
but typically requires more than a just selecting an agent and 
pressing the first person button. In Alice, a user has to write a 
simple program to set the so-called vehicle of the camera to be 
the object to be set into first person. For instance, in a Frogger-
like game, the programmer can become one of the objects that 
move, such as the frog or the car (Figure 12), but also part of 
the scenery, such as agents representing the road or the river. 
The programmer will now see through the eyes of the agent. 
When the agent moves and turns then the camera will move 
and rotate with the agent. This can result in body syntonicity, 
helping programmers to negotiate intricacies of nested 
coordinate systems.  

5.2.  Conversational Programming: Help Predict the 
Future Proactively 

Although computers have become incredibly powerful, 
debugging programs is still an arduous task. Imagine that a 
programmer is working on a game or simulation based on 
many objects, but the program is not behaving correctly and 
requires debugging. Pea [94] conceptualizes the process of 
debugging as “systematic efforts to eliminate discrepancies 
between the intended outcomes of a program [the program we 
want] and those brought through the current version of the 
program [the program we have].” There is a rich body of 



 

research exploring debugging and developing highly 
sophisticated debugging tools. For instance, with the ZStep 
system, Lieberman has explored an approach to locate bugs in 
large code bases [95]. However, most of these tools are aimed 
at professional programmers and not at end-user programmers 
[7].  

The computer, of course, cannot read the mind of users to 
access the programs they want. If it could there would be no 
need for the user to write a program to begin with. However, 
consistent with the notion of pragmatics, the computer can 
show what code means in particular situation. Visualizing the 
pragmatics of code, i.e., the program you have, users may be 
able to perceive discrepancies to the program they want. 

Debugging tools for end-user programmers need to be 
simplified and should focus on strategies either preventing 
bugs or at least minimizing the time between creating a bug 
and being able to experience its consequences. The debugging 
of blocks programs can be supported at the syntactic, semantic 
and pragmatic levels.  

Syntax: Fortunately, little work is required at the syntactic 
level because in most cases it can be reasonably safely 
assumed that programs are syntactically correct. 

Semantics: Most blocks programming languages, including 
Scratch and AgentSheets, provide the affordance of testing 
blocks individually. Actions can be executed to explore their 
effects. Conditions can be tested to see if they are true or false. 
Live Programming [96-98], also found in most blocks 
programming languages, enables users to experience the 
outcome of a program by changing in real time – live – a 
running program.  

Pragmatics: Applying the notion of pragmatics from natural 
languages, “The study of what words mean in particular 
situations,” to programming languages results in the study of 
what programs, or fragments of programs, mean in particular 
situations. Pragmatics affordances such as Conversational 
Programming [99, 100] help programmers to explore the 
meaning of programs in the context of very specific situations. 
In order to establish the notion of a situation, a programming 
environment needs to be deeply connected to the 
representation of a simulation world. For instance, it must be 
possible for a user to arrange objects into a situation and 
define an operational perspective define by selecting objects. 
In a Pac-Man game, it must be possible for a user to select one 
of the ghosts in order to experience the meaning of its 
programming from a very specific context of being at a certain 
location in a maze with a Pac-Man and potentially many other 
ghosts. 

My experience with semantic-level debugging tools is that 
they are best in the hands of experienced programmers who are 
typically not the prime audience of blocks programming. For 
instance, programmers used to programming environments 
providing Read Evaluate Print Loop (REPL) functionality 
found in languages such as Lisp, JavaScript and Python, 
understand the benefits of testing programs incrementally. 
Most blocks programming environments already do, or easily 

could, support this type incremental testing. These functions 
have existed in AgentSheets for over 20 years, but I have found 
that without highly explicit prompting, typical students and 
teachers, by and large, simply did not use them. The main 
problem is not that novices have a hard time to use debugging 
functions but that they do not anticipate the usefulness or even 
the presence of such functions. Instead, they are more likely to 
explore variations of their program in the hope to find a fix 
without planning to invoke some kind of debugging tools.  

If users do not take the initiative for debugging, then 
computers should by becoming more proactive. After all, while 
users are contemplating options to remove discrepancies 
between the program they want and the one they have, 
computers, in spite of their multi-gigahertz, multi-core 
supercomputer capabilities, offer essentially no assistance. 
Conversational Programming [99, 100] is a proactive approach 
to harness this computational power to annotate programs with 
pragmatic information, i.e., the study of what the program 
means in a particular situation (Figure 13). The situation is 
described by an agent that is selected inside a complex 
simulation world. For instance, the user may have selected the 
frog inside a Frogger-like game. The situation combines all the 
state information, including the internal state of the frog and 
also the arrangement and states of all the other agents in the 
world. Conversational Programming is acting essentially like a 
proactive programming peer providing pragmatic information 
to the user. Even when the game is not running, Conversational 
Programming analyzes the program of the user-selected object 
in order to provide pragmatic feedback to the user by 
annotating that program (Figure 12 and 13). 

 

Figure 13.  Conversational Programming. A Conversational Program-
ming Agent (CPA) executes the program and provides rich, 
pragmatic feedback to the programmer relevant to objects of interest 
to the programmer. 

Users can experience pragmatics by exploring various 
situations through the interaction with agents and observation 
how the program will respond differently. For instance, the 
user could drag the frog next to red truck (Figure 14) to 
observe which conditions will be true and which IF/THEN 
rules will fire. This helps users to understand why a certain rule 
does fire or why it does not. Rules that do not fire show why 
they do not fire, e.g., because one of their conditions is false. 



 

The annotation includes detailed information of which 
condition was false resulting in the entire rule not being 
executable. Users can shift perspective by selecting different 
agents. How will the red truck react to the frog moving to its 
right? The Conversational Programming annotations are 
specific to an agent instance, not its class. If a game includes 
multiple frogs, then selecting different frogs will annotate the 
program of each frog program according to the specific 
situation that frog is in.  

 

Figure 14.  Conversational Programming annotates programs proact-
ively to show the future of the simulation. In this example, the next to 
last rule is highlighted in green indicating that this rule will be 
executed. The frog is about to collide with the red truck approaching 
from the left. A sound will be played, the frog will turn into a bloody 
frog, and then the game is reset. 

The proactive nature of Conversational Programming can 
answer questions that users have not asked yet or would not be 
likely to ask through more traditional, passive semantic 
debugging aids. Some consider this a type of pre-bugging 
[101] (proactive debugging tools). In essence, Conversational 
Programming interprets the current state of a simulation and 
computes the next step of the simulation from the viewpoint of 
an individual agent one step into the future.  

Annotations may not be static because many agent behaviors 
include non-deterministic or time dependent code, e.g., code 
depending on AgentSheets/AgentCubes conditions such as 
percentChance(<percentage>) or onceEvery (<time>). 
Employing these kinds of conditions results in animated 
annotations that show the frequency of a code execution path. 
For instance, in a complex IF/THEN/ELSE IF expression with 
a 10% and a 90% case, the 90% case would turn green more 
frequently than the 10% one. If this dynamic annotation 
becomes too much, users can simply deselect agents to turn 
annotations off.  

Conversational Programming benefits from the simple rule 
structure of AgentSheets/AgentCubes. In contrast to the 
general Halting Problem for most AgenTalk programs, it can 
be assumed, but not determined, that the program will finish. 
That is, each agent evaluates a certain number of conditions 
resulting in the execution of a certain number of actions. For 
these cases, the visualization makes sense. However, even in 
AgenTalk, users can program recursive functions, making it 
impossible to determine if the program would ever halt. 
Nonetheless, even if it cannot be determined that a program 
would halt, Conversational Programming could be 
implemented in general purpose programming languages. This 
would make an interesting area for future research.  

AgentCubes supports both Live Programming and 
Conversational Programming. When a simulation is running, 
because of Live Programming [96, 102], users can change the 
code to experience the consequence of these changes in real 
time. However, when a simulation is not running, because of 
Conversational Programming, users still see the consequences 
of their program changes. Conversational Programming is an 
extension to the Live Programming framework providing more 
control to users. In Live Programming, it can be difficult to 
navigate to a very specific program state to understand the 
precise effects of the program at that one state. Conversational 
Programming, in contrast, allows the experimentation with 
states by suggesting the future of the program without actually 
transforming the current state into the future one. In order to 
avoid tainting the future, or the present, this transformation 
needs to be done carefully, without creating any side effects. 

5.3.  Live Palettes: Make Programming More 
Serendipitous  

Pragmatic support of programming should facilitate 
serendipitous discovery helping with the composition of blocks 
(affordance #1). The purpose of a programming block palette is 
to provide a menu of relevant language primitives to users. 
Syntactic, semantics, and pragmatics levels apply to suggest 
approaches that help users to locate relevant blocks. At the 
syntactic level, separate palettes, color-coding or tab based 
interfaces can be used to sort fundamental categories of blocks, 
e.g., conditions versus actions in AgentSheets/AgentCubes. At 
the semantics level, it typically makes sense to group blocks 
into commands with related meaning. At the pragmatics level, 
again, the main idea is to leverage the notion of context by 
facilitating the location of code relevant to specific situations. 



 

Assuming that the world is a complex collection of agents, 
including one selected by the user, pragmatic programming 
block palettes transform from passive containers of blocks to 
live palettes serving as active exploration sandboxes. 
Identically to Conversational Programming, condition blocks, 
for instance, are annotated to show if they are true or false if 
tested by the currently selected agent in its particular situation. 
The element of serendipity comes into play through the 
proactive nature of Live Palettes. All conditions in the 
condition palette can be annotated efficiently by the computer. 
While some programming environments, including 
AgentSheets/AgentCubes and Scratch, support the evaluation 
of individual conditions, the reality is that few users use this 
feature to begin with, and out of the users employing the 
feature even fewer would regularly cycle through all conditions 
just to see which one may be true. This is also a good example 
of how the power of the computer can be harnessed to 
proactively support the programming process. 

Figures 15–17 show how the conditions palette is reacting to 
the user’s changes of the situation by moving the frog in the 
world. First, the frog is below the road, then the user drags it 
onto the first lane of the road and finally to the second lane of 
the road. While the user is dragging the frog around in the 
world the See(left, “red truck”) and Stacked (“immediately 
above”) conditions are updated by having their name turn 
green or red to reflect the truth value of the condition. This 
may provide users serendipitous information that could be 
relevant to design and implementation of programs based on 
situations that the user is exploring.  

Pragmatics makes blocks in block palettes come alive in way 
that helps with composition of blocks (affordance #1). They 
are no longer just dead pieces of code but, instead, are 
dynamically explored as potential candidates for code that 
needs to be written. In other words, with Live Palettes the 
execution of blocks is already relevant to the decision process 
of the user before this user has even written any code. The 
annotation needs to be subtle to avoid overwhelming users with 
potentially irrelevant information. Simply using colors in the 
name of blocks has turned out to be sufficient to serve as 
serendipitous input without becoming intrusive.  

An important concept to convey this type of pragmatic 
information is the responsiveness of the user interface. In his 
seminal work, Michotte [103] explored how people react to 
visual stimuli and noticed that people can actually perceive 
causality, even if connections between cause and effect are 
made up, as long as the manifestations of the effects satisfy 
narrow timing constraints. Similarly, we found that when 
blocks do react swiftly to situation changes, then humans are 
able to perceive a surprisingly large number of parallel changes 
that may result from this change. This is a good example of 
combining computer affordances (using parallel threads to 
bring block palettes to life) with human abilities (to perceive 
causal connections between manipulating a situation and 
perceiving changes) in order to move beyond syntactic support.  

 
 

Figure 15.  Frog is about to cross the street. Stacked (immediately 
above, ground) is true.; See (left, truck) is false. 

 
Figure 16.  Frog is on street next to truck. Stacked (immediately 
above, ground) is false; See (left, truck) is true. 

 
Figure 17.  Frog is on street without a truck heading towards it. 
Stacked (immediately above, ground) is false; See (left, truck) is false 

6. Computational Thinking Tools 
Just as much as the research on blocks programming has not 

received enough attention at the language level for issues of 
semantics and pragmatics, there is an equally critical blind spot 
at the tool level. Going back to the Cognitive/Affective 
Challenges space (Figure 1), tools are essential to mitigate 
some of these challenges, but the very notion of programming 
tools may be too narrow, particularly in the context of 
Computer Science education. The goal of Computer Science 
education is not to write programs but to become 
Computational Thinkers [104]. It is gradually becoming more 
apparent that coding does not automatically lead to 
Computational Thinking. Duncan [105] summarized a pilot 
study with primary school students in New Zealand with 

“We had hoped that Computational Thinking skills would be 
taught indirectly by teaching programming and other topics in 
computing, but from our initial observations this may not be the 
case.” 

The Computational Thinking Process starts before writing 
the first line of code. Over many years, the Scalable Game 
Design project [51] has systematically trained teachers in 
Computational Thinking and evaluated the efficacy of these 
approaches. To adopt to the needs of Computer Science 
education, almost as a side effect, AgentSheets and 
AgentCubes have gradually shifted from being programming 
tools to becoming Computational Thinking Tools [37]. In 



 

contrast to traditional programming tools, Computational 
Thinking Tools address a much wider spectrum of the 
cognitive challenges (Figure 18) and provide support for all 
three stages of the Computational Thinking Process (Figure 
19). 

 
Figure 18.  Computational Thinking Tools in the Cognitive/Affective 
Challenges space. 

 

Figure 19.  The Computational Thinking Process. 

The term Computational Thinking (CT), popularized by 
Wing [104], had previously been employed by Papert in the 
inaugural issue of Mathematics Education [106]. Papert 
considered the goal of CT to forge explicative ideas through 
the use of computers. Employing computing, he argued, could 
result in ideas that are more accessible and powerful. 
Meanwhile, numerous papers [107] and reports have created 
many different definitions of CT. Recently, Wing followed up 
her seminal call for action paper with a concise operational 
definition of CT [108]: 

 “Computational thinking is the thought processes involved in 
formulating a problem and expressing its solution(s) in such a 
way that a computer—human or machine—can effectively carry 
out.” 

Based on Wing’s definition, the Computational Thinking 
Process can be segmented into three stages. The example in 

Figure 19 of a mudslide simulation is used to illustrate the 
three Computational Thinking Process stages. 

1. Problem Formulation (Abstraction): Problem 
formulation attempts to conceptualize a problem 
verbally, e.g., by trying to formulate a question such as 
“How does a mudslide work?,” or through visual 
thinking [109], e.g., by drawing a diagram identifying 
objects and relationships.  

2. Solution Expression (Automation): The solution needs 
to be expressed in a non-ambiguous way so that the 
computer can carry it out. Computer programming 
enables this expression. A simple mudslide model can 
be expressed with just a handful of rules. The one rule 
in Figure 19 expresses a simple model of gravity: if 
there is nothing below a mud particle it will drop down. 

3. Execution & Evaluation (Analysis). The solution gets 
executed by the computer in ways that show the direct 
consequences of one’s own thinking. Visualizations, for 
instance the representation of pressure values in the 
mudslide as colors, support the evaluation of solutions.  

The vision for Computational Thinking Tools [37] is to 
support and integrate the three stages of the Computational 
Thinking Process. Certainly, any kind of programming tool can 
be employed for Computational Thinking. End-user 
programming tools, for instance, are focused on the support of 
the solution expression by making programming more 
accessible. However, Computational Thinking Tools should go 
further by providing additional support for the problem 
formulation as well as the problem execution & evaluation 
stages of the Computational Thinking Process.  

Of course, Computational Thinking can be stimulated by 
programming, but a trip from Chicago to Los Angeles can also 
be achieved by walking. Ultimately, one needs to better 
understand the precise goals and potential overhead of specific 
approaches. For instance, if the goal of programming is 
becoming a professional programmer versus a computational 
thinker, then different tools and different scaffolding [110] 
approaches may be necessary. When computing-skeptical 
STEM teachers see simple applications such as a two species 
ecosystem simulations turn into two hundred of lines of code, 
then one should not be too surprised that the adoption of 
programming in STEM courses is still abysmal. Blocks 
programming will not help either if the result is a similarly 
complex deeply nested Escher-esque color puzzle.  

The different needs for programming in education pulls 
programming environments into two very different directions. 
Programming tools are general purpose programming 
environments that can be used for a large variety of projects, 
but most interesting programs quickly become elaborate 
because of accidental complexity [111]. Accidental complexity 
is complexity that cannot be traced back to the original 
problem. In contrast to intrinsic complexity, accidental 
complexity was added through a solution process involving 
certain tools or approaches. Computational Thinking Tools, 



 

with their pronounced goal to support the Computational 
Thinking Process, have a more narrow range of projects, but 
they manage coding overhead in ways so that simple 
Computational Thinking can be expressed with little code. Of 
course, programming tools could be used for Computational 
Thinking or Computational Thinking Tools could be used to 
create general-purpose projects, but in either case the mismatch 
between tool and application is likely to cause excessive 
accidental complexity. This complexity, in turn, may simply be 
too much to justify educational uses.  

Computational Thinking Tools and Programming Tools can 
be integrated technically or pedagogically. While most 
beginning mandatory courses with highly constrained time 
budgets may initially be best off to start with Computational 
Thinking Tools, it does often makes sense in later elective 
courses to switch to Programming Tools. There are many ways 
to technically integrate both kinds of tools. An early version of 
AgentSheets included an extremely powerful but also 
somewhat dangerous Lisp block allowing advanced users to 
enter arbitrary Common Lisp to be integrated into their Blocks 
program. With the GP system, Mönig et al. are going a 
different route by attempting to create a general purpose blocks 
programming language powerful enough to implement itself 
[112]. Alternatively, pedagogical integration would employ 
scaffolding approaches to transition from a Computational 
Thinking Tool to a Programming Tool without actually 
integrating tools technically. An example of a scaffolding 
approach is that AgentSheets/AgentCubes can convert blocks 
programs into Java and JavaScript sources respectfully. This 
can help students to understand how to make the transition. 

AgentSheets and AgentCubes are Computational Thinking 
Tools. A first blocks programming prototype of AgentSheets 
implemented a large subset of Common Lisp concepts in order 
to become a programming tool. However, beyond the syntactic 
support of programming, which was important, it gradually 
became clear that, when focusing more on semantic and even 
pragmatic issues, it would be possible to create a conceptually 
different tool that could better support the problem analysis, 
solution formulation, and project expression stages of the 
Computational Thinking Process [104, 108]. A key principle of 
Computational Thinking Tools is that they should reduce the 
need for accidental complexity as much as possible. Guzdial 
reached a similar conclusion in the context of computing 
education [113] by suggesting that “If you want students to use 
programming to learn something else [e.g., how to author a 
simulation] then limit how much programming you use.” The 
affordances related to the reduction of accidental complexity 
can be understood at three different levels: 

Syntax: At the syntactic level, the form of a program can be 
controlled through disclosure mechanisms. For instance, just 
like the &optional directive in Common Lisp declares 
optional parameters, blocks in AgentSheets/AgentCubes can 
have optional parameters. The visibility of these optional 
parameters is controlled through disclosure mechanisms 
(Figure 20). Clicking a disclosure triangle will show/hide the 

optional parameters. Additionally, method blocks, containing 
rules, have disclosure triangles to show/hide their content. 
When the rules are hidden, a method will still show its 
documentation, turning the disclosure mechanism into a 
switch between viewing method implementation or only 
specification. While there are many textual programming 
languages that feature optional or named parameters, this 
concept appears not to have found widespread acceptance into 
other blocks programming languages, with the exceptions of 
blocks programming languages such as Alice [30] and Snap! 
The optional parameter mechanism is relevant to the notion of 
accidental complexity in the sense that optional parameters are 
typically chosen to capture less important or even qualitatively 
different parameters that may not be relevant to understand the 
main function of a program. For instance, in Agent-
Sheets/AgentCubes, in contrast to regular parameters 
describing what should be done, optional parameters are used 
to describe how it should be done. For instance, the required 
direction parameter in the Move action describes which 
direction the agent will move, whereas the animation time and 
animator style parameters only describe animation details of 
the move transition.  

 
Figure 20.  “move” action non disclosed (left). “move” action dis-
closed, showing information relevant for animation control (right). 

Semantics: At the level of semantics, domain-orientation 
[114] is the provision of functions that reflect the needs of 
specific application domains. An Application Programming 
Interface (API) centered around related functions is an 
example. For instance, a set of functions to control a robot can 
be a domain-oriented API where the domain would be 
robotics. APIs are at the root of practically all domain-oriented 
languages, block-based or not. The main angle to reduce 
accidental complexity through domain-orientation is by 
eliminating the need build functions from the ground up. If a 
programming environment is frequently used to create 
scientific visualizations, then it should include domain-
orientation offered through functions highly relevant and 
usable to create these visualizations. 

Pragmatics: According to Webster, in the context of natural 
languages, pragmatics is about “the study of what words mean 
in particular situations.” In programming, this could be 
modified to “the study of what code means in particular 
situations.” For pragmatic support, Computational Thinking 
Tools are challenged to aid programmers to figure out what 
code does in specific situations. In a game context this means, 
for instance, that programmers should be able to manipulation 
the state of a game, i.e., the situation, and get tools that show 
potential impact on the execution of code. At the level of 
pragmatics, accidental complexity that gets in the way of 



 

understanding the meaning of code in the context of specific 
situations should be reduced. To that end, it is important to 
understand the degree of structure of a situation. A situation in 
Scratch is the 2D stage containing sprites with certain 
locations and orientations. Similarly, a situation in Alice is a 
3D world containing 3D objects. In both cases, however, the 
situations are essentially unstructured. The locations of 2D/3D 
objects have no intrinsic meaning. AgentCubes, in contrast, 
has a highly structured situation, i.e., the AgentCubes, which 
is a grid of rows, columns, and layers containing stacks of 
agents. The AgentCubes world provides a user interface 
empowering users to edit these 3D grids by placing agents, 
moving and copying agents similarly to how players edit 
Minecraft worlds. As one can witness with spreadsheets, 
structured situations can reduce accidental complexity 
dramatically because with spreadsheets no part of the user 
code is concerned with the maintenance of the cell structure. 
Spreadsheet formulas are merely capturing the functional 
dependence of values contained in cells without the need to 
understand how values are presented to users [115, 116].  

The 15 squares puzzle, shown in Figure 21, is a classic 
children’s toy that can be used to further illustrate the benefits 
of pragmatics. The game consists of sliding 15 numbered 
squares into a sorted arrangement, 1-15, in a 4 x 4 grid. Many 
computer program implementations of the game exist. From a 
Computational Thinking point of view, the core idea is simple: 
click a square next to the hole to make it slide into the hole.  

 
Figure 21.  15 squares puzzle. 

From a coding point of view, however, efforts can vary 
widely. A Python program to implement the “click to slide” 
functionality (e.g., [117]) quickly runs into hundreds of lines of 
code, not including the functionality to solve the puzzle. 
Similar programs, written in other programming languages 
such as Java and even in blocks programming languages, are of 
comparable size. Indeed, some blocks programming languages 
such as Scratch with missing class/instance object models often 
result in even more complex programs because of duplications 
[118]. The point here is not to be negative regarding 
programming tools, but to simply suggest that accidental 
complexity can be a huge overhead for Computational 
Thinking applications that is not automatically solved through 
blocks programming. 

Employing AgentCubes as Computational Thinking Tool, 
the implementation of the 15 squares puzzle will include very 
little coding overhead. The “click to slide” functionality 
requires only four simple rules checking if there is an empty 

spot adjacent to the clicked square and, if so, move into that 
spot (Figure 22). Additionally, selecting squares activates 
Conversational Programming (square #11 was clicked) and 
highlights the fact that #11 can go left. Comparing Python to 
AgentCubes seems hardly fair. In AgentCubes, the notion of a 
grid, animations, and even numbered squares serve as situation 
structure dramatically reducing accidental complexity in a 
similar way that spreadsheets allow its users to focus on math. 
Additional affordances, such as the ability to access attributes 
of agents through spatial references, like in spreadsheets, and 
to express complex parallel animations, facilitate the creation 
of a wide range of projects from simple particle systems to 
games including sophisticated AI with very little code.  

 
Figure 22.  Four rules for 15 puzzle to make agent next to hole move 
into hole. 

Each affordance has some limitations. Spreadsheets are the 
most frequently used end-user programming tools in the world, 
but they are not general purpose programming tools. Nobody 
would want to write a compiler with Microsoft Excel even 
though it may theoretically be possible. Looking at some of the 
incredibly elaborate designs that motivated users come up with, 
e.g., creating sophisticated machines by tediously arranging 
thousands of blocks in Minecraft, it is sometimes not clear 
what kinds of applications tools will afford. The 2D/3D grid 
structure in AgentSheets and AgentCubes is not well suited for 
applications requiring the computation of arbitrary trajectories. 
This would make it difficult to animate to trajectory of a 
cannonball. Even these limitations, however, have not stopped 
some AgentSheets users from implementing projects such as a 
three-body problem that would appear to be clear mismatches 
with the affordances of the tool. 

A playable Pac-Man game (Figure 23), including endgame 
detection and collaborative AI [119] making ghosts collaborate 
with each other, can be created in just 10 rules (Figure 24). 
Due to collaborative diffusion, this game actually includes 
more sophisticated AI than the original game.  



 

 
Figure 23.  Pac-Man Game World. 

These 10 rules implement: 

• Collaborative Diffusion: [119, 120]: rule 1 of the 
background tile diffusing the scent of the Pac-Man as 
(variable P) and rule 2 of the pellet. 

• Ghost hill climbing: rule 1 of the ghost. 

• Game won detection: rule 1 of the Pac-Man. 

• Game lost detection: rule 2 of the Pac-Man. 

• Pac-Man cursor key control: rules 3-6 of Pac-Man. 

• Pellets being eaten: Pellet rule 2. 

To start the diffusion the Pac-Man agent is given a p value of 
1000. (Variables are case-insensitive, so P and p denote the 
same variable.) This is done through an agent attribute editor 
allowing users to edit arbitrary agent attributes. No 
programming is required to set agent attributes. They can be set 
and will be saved when the world containing the agent is 
saved.  

The Flabby Bird 3D game (Figure 25) illustrates a volume 
scroller game (generalizing 2D side scroller games). A basic 
version of this game can also be created in 10 rules. This kind 
of game would be nearly impossible to create with 2D tools 
such as Scratch, but also would be difficult to create with 3D 
tools such as Alice. 

Game design is highly motivational, but not the focus of 
Computational Thinking. AgentSheets and AgentCubes are not 
just about game design but about learning Computational 
Thinking patterns in ways the that they can be leveraged by 
students to build STEM simulations. The Predator/Prey project 
(Figure 26) can also built with just 10 rules to investigate the 
stability of ecosystems. AgentCubes includes plotting tools to 
visualize data and to export it to other tools such as Microsoft 
Excel or Google Sheets for further analysis.  

 
 

 

 

Figure 24.  Complete Pac-Man game including collaborative AI in 
just 10 rules. 



 

 
Figure 25.  AgentCubes Flabby Bird 3D game. 

 
Figure 26.  Predator Prey simulation including data visualization in 
AgentCubes. 

There are downsides to Computational Thinking Tools. The 
scaffolding employed to make Computational Thinking Tools 
practical for classroom use may get in the way of general-
purpose programming. This is a trade-off. Similarly, 
spreadsheets would not be well-suited for creating games such 
as billiards or Pong. And yet, spreadsheets are the number one 
end-user programming tool. At one point, AgentSheets did 
have graphs, but it felt like a confusing kitchen sink. Over 
time, these odd features got removed from AgentSheets.  Other 
data structures are intrinsic to the AgentSheets/AgentCubes 
world. An array is a row, column, or set of layers of an 
AgentCubes world. In other words, the world and its structure 
are the data structure. There are 1D, 2D, 3D arrays that are 
similar to spreadsheets. Additionally, each cell can contain 
stacks of agents. As long as users can establish a conceptual 
match between the problem structure and the 3D row, column, 
layer, stacks metaphor, AgentCubes can serve as an efficient 
thinking and programming tool. But there are clear limits when 
additional functionality begins to erode affordances. Some-
times more is less. 

The threshold between programming tool and a Com-
putational Thinking Tool is not what can and cannot be done 
conceptually but what can be done practically from a 

classroom point of view. Advanced students have built 
sophisticated simulations of 3-body problems in AgentSheets. 
Using a fine grid with hundreds of thousands of agents, this 
can be done, but it goes against the grain of the solution 
structure implied by AgentSheets. Just as a scientific calculator 
can be built with millions of Minecraft blocks by a user with 
thousands of hours at his hands, these solutions could be built 
with Computational Thinking Tools, but they are not practical 
in a traditional educational context.  

Just as the 3D cube with stack structures provides a spatial 
scaffold in the AgentSheets/AgentCubes programming lan-
guage, AgenTalk is a language scaffold that removes many of 
the intricacies (but also affordances) of general-purpose 
programming languages. The rule-based nature of AgenTalk is 
surprisingly versatile. Rules can be grouped into methods that 
can be called through actions.  Method calls can be recursive. 
Event-based programming (e.g., mouse clicks and timers) can 
be expressed. Cloud variables can be used to exchange values 
through the network to create distributed simulations. The 
combination of these features make it possible to cover the 
entire spectrum of Computational Thinking concepts, ranging 
from procedural abstractions over iterations through net-
working.  

Computational Thinking Tools are specifically designed to 
support Computational Thinkers in schools. They scaffold the 
entire Computational Thinking Process. AgentSheets and 
AgentCubes are presented here as early examples of 
Computational Thinking Tools. The main point of this section 
is to suggest a new research direction and to illustrate the 
concept with a concrete starting point. 

7. Conclusions 
The blocks programming community, by and large, has been 

preoccupied with syntactic affordances of programming 
environments. It is time to shift research agendas towards the 
systematic exploration of semantic and pragmatic affordances 
of blocks programming. Syntactic affordances of programing 
languages can be compared to spell and grammar checking in 
word processing. This type of support is highly useful but, 
computationally speaking, trivial compared to the challenges 
ahead attempting to support users to produce meaningful 
programs. The most daunting challenge will be to support 
pragmatics, that is the study of what code means in 
particular situations. To overcome this challenge, new 
approaches require the combination of various promising 
approaches, including program analysis, program visualization, 
and real-time user interfaces. 

A promising direction may be the exploration of what 
exactly situations really are in Computational Thinking Tools. 
In AgentCubes, situations are visible game or simulation states 
including complex 3D worlds that users can interact with. A 
situation should be a tight integration of game and program 
state allowing programmers to navigate fluidly in space and 
time from the code as well as from a world point of view. 
Select objects in scenes, change properties of objects, and 
observe the consequence on the program execution. Select 



 

programming primitive and explore their consequent onto the 
world. New research will likely reconceptualize deep 
connections between the program state and the game world.  

Twenty years ago, AgentSheets combined four key 
affordances to create an early form of blocks programming. 
After initially focusing on syntactic affordances, using 
AgentSheets in computer science education, I have 
experimented with approaches to move beyond syntax to 
address semantic and pragmatic obstacles. Three approaches 
are described: (1) Contextualized Explanations to support 
comprehension, (2) Conversational Programming to help 
predict the future proactively, and (3) Live Palettes to make 
programming more serendipitous. Additionally the vision of 
Computational Thinking Tools as a means to support 
Computational Thinking Processes while reducing accidental 
complexity emerging from coding has been outlined.  
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