

Moving Beyond Syntax: Lessons from 20 Years
of Blocks Programing in AgentSheets

Alexander Repenning
University of Colorado

Boulder, Colorado 80309
ralex@cs.colorado.edu

School of Education
University of Applied Sciences and Arts Northwestern Switzerland

(PH FHNW) Brugg-Windisch, Switzerland
alexander.repenning@fhnw.ch

Abstract The blocks programming community has been preoccupied
with identifying syntactic obstacles that keep novices from learning
to program. Unfortunately, this focus is now holding back research
from systematically investigating various technological affordances
that can make programming more accessible. Employing approaches
from program analysis, program visualization, and real-time
interfaces can push blocks programming beyond syntax towards the
support of semantics and even pragmatics. Syntactic support could
be compared to checking spelling and grammar in word processing.
Spell checking is relatively simple to implement and immediately
useful, but provides essentially no support to create meaningful text.
Over the last 25 years, I have worked to empower students to create
their own games, simulations, and robots. In this time I have
explored, combined, and evaluated a number of programming
paradigms. Every paradigm including data flow, programming by
example, and programming through analogies brings its own set of
affordances and obstacles. Twenty years ago, AgentSheets combined
four key affordances of blocks programming, and since then has
evolved into a highly accessible Computational Thinking Tool. This
article describes the journey to overcome first syntactic, then
semantic, and most recently pragmatic, obstacles in computer
science education.

1. Introduction: Programming is “hard and
boring”

The statement “programming is hard and boring” made by a
young girl when asked what she was thinking about
programming approximately 20 years ago, does not suggest a
workable trade-off but instead a heartbreaking lose-lose
proposition. Disappointingly, a recent report by Google [1]
exploring why women do not choose Computer Science as a
field of study listed the top two adjectives describing women’s
perception of programming as “hard” and “boring.” These
persisting concerns can be interpreted as a two-dimensional
research space called the Cognitive/Affective Challenges
Computer Science Education space [2] (Figure 1). The “hard”
part is a cognitive challenge requiring programming to become
more accessible. The “boring” part is an affective challenge
requiring programming to become more exciting. In other
words, the big question is how does one transform “hard and
boring” into “accessible and exciting?”

The research described here is my 20-year journey through
the Cognitive/Affective space. In the lower left of this space is

the “compute prime numbers” using C++ and Emacs activity
which, by the vast majority of kids, is considered to be hard
and boring. In the upper right corner is the elusive holy grail of
Computer Science education providing activities that are easy,
or at least accessible, and exciting. This journey started in the
lower left corner and is gradually moving towards the upper
right corner. The path of this journey is not straight. It includes
setbacks and detours. Also, while progress has been made, the
journey is far from over.

Figure 1. The Cognitive/Affective Challenges Computer Science
Education Space.

To explore the affective challenge (Figure 1, horizontal axis)
and better understand the reasons why kids would, or would
not, want to program, the first question is “What would kids
really want to program?” Traditional introductions to
programming based on examples such as computing prime
numbers are not particularly compelling to most kids. I have
developed the Retention of Flow instrument [3, 4] to actually
measure motivation. This instrument was applied to our 3D
Frogger Hour of Code tutorial and showed that a large
percentage of kids want to and can build games even with very
limited time [5]. But what if kids could program games, robots
and maybe even simulations? A key to overcome affective
challenges and broaden participation with respect to gender

DOI reference number: 10.18293/VLSS2017-010

and ethnicity is the support of creativity, ownership and social
computing [6]. To better understand the rationale behind
AgentSheets, it may be helpful to travel back in time to clarify
what it was supposed to be used for.

I was fascinated by the affordances of spreadsheets. A
simple grid based structure, containing numbers and strings,
combined with a formula language resulted in the awesome
power to enable an unparalleled fleet of end-user programmers
[7] to create sophisticated computational artifacts. These
artifacts, in turn, were dealing with an extremely rich set of
problems ranging from somewhat dry business applications
such as tax forms to highly entertaining topics such as games.
What turned gradually into an obsession with grids was
nourished even further with events taking place around the
same time.

In 1988, as a beginning PhD student, I was in charge of
helping scientists to use the Connection Machine (CM2), an
intriguing looking, massively parallel supercomputer with up
to 65,536 CPUs connected up as a 12-dimensional hypercube.
The SIMD architecture of the Connection Machine 2 (CM2)
was perfect to compute solutions to problems that can be
reduced to cellular automata [8] or Mandelbrot sets in real
time. However, even the intriguing look – a huge black cube
with a massive panel of wildly blinking red LEDs featured five
years later in the movie Jurassic Park – could not overcome
difficult programing obstacles. The scientists of the National
Center for Atmospheric Research (NCAR) that I worked with
had concrete needs to run sophisticated weather models. At
first sight the CM2 appeared to be a dream come true.
Unfortunately, it was not clear to the scientists how they would
benefit from a 12-dimensional hypercube. But perhaps even
more of an obstacle was that the programming models they
were used to (most of the models they had at the time were
written in Fortran) did not map well onto the *Lisp-based
programming model featured by the CM2. This mismatch was
not limited to the tasks attempted by the NCAR scientists. In
1994, Thinking Machines, the organization behind the
Connection Machines, went out of business.

While the CM2 and *Lisp did not become commercial
successes, they helped to shape a new parallel mindset to think
about problems differently. AgentSheets did not attempt to
replicate the 12-dimensional hypercube topology of the CM2,
but it did create a highly usable 3-dimensional 3D abstraction
based on rows, columns, and stacks. Similarly, StarLogo [9],
which also came into existence as a *Lisp prototype on the
CM2, also became an end-user modeling environment for
parallel processes.

Another milestone in my obsession with grids was the 1989
game SimCity. In my mind, the computational notions intrinsic
to spreadsheets, cellular automata, and SimCity-like games
started to fuse into a single massively parallel, visual, end-user
programmable computation idea that became AgentSheets.
Each idea had its own affordances and obstacles. My goal
became to create a framework that could become a synergetic
combination overcoming one idea’s obstacle with another
idea’s affordance. For instance, allowing spreadsheet cells to

contain animated icons similar to the ones found in SimCity,
rather than limiting the content to text, could enable end-users
to create more exciting applications such as games and
simulations. Cells could contain programmable objects, called
agents. These agents could do much more than just computing
numbers. They could move around, change their appearance,
interact with the user through keyboard and mouse commands,
play sounds, use text to speech, react to voice commands, and
many more things. Cells could contain multiple agents that
could be stacked up. The grid containing these agents became
the AgentSheet (Figure 2).

Figure 2. An AgentSheet is a grid containing agents with states in-
cluding depictions.

Experimenting with agents representing objects such as
people, animals, building, wires, switches, bulbs, pipes,
buildings, roads, and cars, it became clear that there was a vast
universe of exciting applications that could be built with
AgentSheets (Figure 3). The target audience of AgentSheets
had shifted from scientists to children. The main reason for this
shift was that the exploration of the cognition of computing
required untainted minds. In contrast to the children, the
scientists had strong preconceptions on the very nature of
computation based on their experiences with current
programming languages such as Fortran. I felt that if I wanted
to explore the cognitive challenges of programming then I
should start with an audience that did not have any
preconceived notions of programming flavored by previous
programming experiences. My research platform was based on
Common Lisp, a language that is highly malleable for creating
new programming languages. The programming language I
designed, AgenTalk, was an object-oriented programming
language including Lisp-style syntax to express the behavior of
agents. AgenTalk was clearly powerful enough to build a huge
variety of applications including SimCity-like games, agent-
based simulations, cellular automata and even numerical

applications such as spreadsheets. Unfortunately, yet not very
surprisingly in hindsight, AgenTalk was too difficult to
understand even for the many eager children who wanted to
create their own games.

Figure 3. AgentSheets Example applications.

To make programming more accessible and exciting [10], it
is necessary to understand complex interactions between
affective challenges and cognitive challenges. Kids may be
quite excited to build a game, simulation, or robot, but if the
tools are too complex then there is a good chance kids will give
up because the return on investment is not clear. AgentSheets
had turned into a simple but quite promising game and
simulation authoring tool. However, AgentSheets was in dire
need of a more accessible end-user programming approach that
addressed cognitive challenges. Cognitive challenges can be
broken down into three main obstacles:

1. Syntactic: is about the arrangement of programming
language components into well-formed programs.

2. Semantic: is about helping users with the
comprehension of the meaning of programs.

3. Pragmatic is about practical concerns of programming
languages, including the comprehension of programs in
the context of specific situations.

At that time it was not at all clear to me that what I initially
considered just a minor syntactic challenge should keep me
busy for the next twenty years. In my initial obsession with the
syntactic obstacle, it took me a long time to recognize, let alone
to overcome, the semantic and pragmatic obstacles.
Unfortunately, too much of the current research and
development of blocks programming is still focused on the
syntactic level of challenges. My aim in this paper is to
strongly encourage blocks programming researchers to shift
away from syntactic towards semantic and pragmatic
programming challenges. In my projects, this shift in emphasis
has been buttressed by some longitudinal research that
unfolded continuously over 20 years, from informal
observations in small afterschool programs to large scale
national and even international implementations, including the
use of sophisticated evaluation instruments. In this paper, I
share the lessons that I’ve learned in my journey, with the hope
that they will be useful in other projects.

This paper contains six more sections. Section 2 explores
syntactic obstacles through the lens of the AgentSheets genesis.
Section 3 defines four key affordances associated with blocks
programming, and Section 4 puts this research into a much
wider context of related work by considering these four
affordances. Section 5 looks at techniques to overcome
semantic and pragmatic obstacles. Section 6 outlines a vision
for future research called Computational Thinking Tools.
Computational Thinking Tools support Computer Science
education by carefully balancing cognitive and affective
challenges through the support of the Computational Thinking
Process (see Figure 19 later). Section 7 concludes the paper.

2. Syntactic Challenges and Beyond
Before I settled on the current form of drag-and-drop blocks

programming for AgentSheets, I explored a number of
programming paradigms to overcome syntactic obstacles.
These obstacles are rooted in the simplicity of creating a
syntactically wrong program [11]. Being, for instance, just
“one semicolon away from total disaster” with many traditional
programming languages can be the source of extreme
frustration, particularly for novices. This section illustrates
syntactic obstacles by briefly discussing some of the
milestones of AgentSheets transitioning from text based
programming to blocks programming.

The first approach to overcome syntactic obstacles in
AgentSheets was rooted in graphical rewrite rules [12-14].
Initially, AgentSheets [15] was built with a text-based object-
oriented extension of Common Lisp called OPUS [16]. A Zipf
distribution analysis [17] of OPUS methods used in
AgentSheets project revealed that most of the methods used
were about making agents move, e.g., a car moving on a road,
or changing their appearance, e.g., a person changing from a
happy to a sad face. This analysis discovered power laws in
natural language word frequency similar to the frequency of
tools used by a blacksmith [18]. The distribution suggested that
graphical rewrite rules [12-14] would be a good match because
they support the most frequent uses of actions (movement and

change) well. Moreover, by combining graphical rewrite rules
with programming-by-example mechanisms, these rules could
be automatically generated to circumvent any kind of syntactic
obstacle. For instance, a train could be programmed to move
on a train track simply by selecting it in the scene and moving
it one step on the track (Figure 4). The first usability test was
so successful that kids had to be forced to stop and go home
from the lab. Several iterations of agent-based graphical
rewrite rules were explored to enable the creation of more
complex games and simulations. Collaboration between the
University of Colorado and Apple Computer resulted in several
prototypes based on the SK8 programming environment [19].
The Apple team created a SK8 prototype called KidSim [20],
which later turned into Stagecast Creator.

However, an effect that I later described as “trapped by
affordances” [21] described a shallow learning curve followed
by a sudden, steep incline. While it had become tremendously
simple to get started, this approach essentially dead ended at a
certain level of project complexity when users were trying to
do more than just having agents move around and change their
appearance. Graphical rewrite rules were powerful enough to
create very basic games or animations, but my original goal
was to create a framework that could also be used for more
sophisticated games and simulations. Graphical rewrite rules
fell short of this vision.

Figure 4. AgentSheets Graphical Rewrite Rule. Double clicking an
agent would create a local copy of the agent’s situation. Users could
demonstrate actions such as moving the train on a train track to the
right.

A first step towards the exploration of semantics, with the
goal to overcome the syntactic obstacles experienced with
graphical rewrite rules, resulted in the creation of semantic
graphical rewrite rules [22]. Semantic graphical rewrite rules
enabled users to annotate agents with semantic information that
could be used to generalize the interpretation of a rule in order
to avoid huge numbers of permutations. For instance, a
horizontal piece of road, similar to a wire or a pipe, could be
annotated to mean that this horizontal symbol represents a
connector connecting things on the left with things on the right
and vice versa. AgentSheets can, syntactically and
semantically, transform agent depictions into all the necessary
permutations necessary to facilitate generalization. In a
SimCity-like simulation, the user would only have to draw a
single horizontal piece of road to have AgentSheets

automatically generate all the 16 permutations of road pieces
(straight pieces, turns, T-sections and intersections). The 2^4
permutations are the result having or not having a connection
in each direction (up, down, left, right). The transformation of
the agent depictions applies sophisticated image warping,
including the bending of icons [23], to the artwork initially
provided by the user. The transformed icons can be further
annotated by users. For instance, the dead end road pieces in
Figure 5 were annotated with road signs. Also, Figure 5 only
shows 15 our of the 16 road pieces. The road piece connecting
nothing, i.e., road piece zero, may as well be left off.
AgentSheets will also apply the semantic equivalents of these
syntactic transformations to agents, e.g., a horizontal piece of
road connecting the left with the right, when transformed into a
vertical piece of road, will connect the top with the bottom.
The net effect of this idea was that the user would only have to
draw a single piece of road which could be turned into a
complex road system, and then program a car with a single rule
to follow that road. In other words, the design and
programming of a project that would have taken multiple hours
to complete could be compressed into a 5-minute task thanks to
semantics. These ideas are of course not limited to roads but
apply to any kind of object representing conductivity, such a
wires conducting electricity or rivers conducting water.
Programming by analogous examples [24] went one step
further by allowing users to express analogies such as “a train
moves on a train track like a car moves on a road” to map
sophisticated interactions from one context to another.

Figure 5. AgentSheets can syntactically and semantically bend, inter-
sect, and rotate transform depictions to interpret rules semantically.

Gradually the notion of blocks as programming language
components emerged in AgentSheets. In LEGOSheets the
programming language components became more tangible by
representing end-user editable [7] rules that users could
rearrange and modify with direct manipulation [25] interfaces.
LEGOsheets [22] was an AgentSheets derivative based on
spreadsheet-like cells interfacing with sensors and effectors.
The programming language used in LEGOSheets became the
first visual programming language for the MIT programmable
brick. The LEGO Company later created the Mindstorm

system based on the MIT programmable brick. LEGOSheets
rules are associated with effectors such as motors. To express a
rule, a user creates a spreadsheet-like mathematical formula
referring to sensors.. Clicking on a sensor adds a symbolic
reference to the rule of the effector to be programmed.

The approaches described above reduced syntactic obstacles
through the direct manipulation of objects, the agents, instead
of typing in text. Unfortunately, not every operation that agents
are able to perform could be demonstrated through programing
by example approaches. A different approach making all the
operations agents can perform accessible to an end-user would
be to provide these operations as objects – or blocks – that
users could explicitly manipulate. These blocks should be
encapsulated objects providing direct manipulation user
interfaces [25] facilitating simple end-user editing. That is,
users should be able to move them around, duplicate them, and,
if they represent operations, control all of their parameters with
highly accessible user interfaces. For instance, a color
parameter should not be a piece of text that can be mistyped
but should be a type interactor, called color, bringing up a
color selection widget enabling users to pick a color from a
color palette. The idea of programming language primitives as
blocks already existed. Blox Pascal [26], for instance, already
used the notion of puzzle pieces (Figure 6) to represent
syntactic relationships between primitives.

Figure 6. Puzzle shaped Blocks in 1984 Blox Pascal.

Under the title of Tactile Programming [27], AgentSheets
introduced a form of blocks programming in 1995 (Figure 7)
by combining four affordances defined in the next section. As a
tool providing blocks programming to create games and
simulations, it made a significant step in moving away from
“hard and boring” toward “accessible and exciting.” Similar
block approaches were later found in Squeak eToys [28, 29],
Alice [30], and ten years later in Scratch [31]. Unlike the
programing approaches discussed above, blocks programming
has stayed with AgentSheets for over 20 years now.
AgentCubes [10, 32-35], featuring innovative 3D end-user
modeling approaches empowering kids to create their own 3D
worlds, includes sophisticated parallel execution and animation
models for blocks programming. AgentCubes online is an early
Web-based 3D game and simulation authoring tool merging
end-user 3D modeling [36] with end-user programming.

Common to these tools are three core principles that shaped the
creation of blocks programming in AgentSheets back in 1995
[27]:

1. Composition: A drag-and-drop-based approach was
employed to aggregate individual programming
language primitives, called commands, into a whole
program. This was perhaps the most evident affordance
of blocks programming. AgentSheets’ aim was not to
become a general purpose programming environment
but a Computational Thinking Tool1 [37]. To that end,
the puzzle piece idea was replaced with a combination
of color-coded language primitives, e.g., conditions
versus actions, and syntactic drag-and-drop feedback.
For instance, the user would get a clear signal through
an animated cursor that a condition could not be
dragged into the THEN part of an IF/THEN statement.
While dragging a block the mouse cursor turns into a
green positive indicator when a block fits or into a red
negative indicator if it does not fit at the current
location. An important concept that is integral to Tactile
Programming is that blocks can be composed from any
source including from websites.

2. Comprehension: A programming block should be able
to explain itself to a user, similar to the way that
Rehearsal World [38] could provide explanations for
parts of a programming-by-example program. As a
programming object, a block can establish connections
to objects in the project, i.e., agents. For instance, users
can drag actions such as a move (right) action onto a
frog agent to make it move to the right. This is not an
act of programming but a process supporting
comprehension. What does this action do to this agent?
Likewise, conditions can be tested to learn if they are
true or false. Explanation implies that every block can
produce an animated description of what it will be doing
based on its parameter settings or subcomponents. For
instance, the move (right) explanation would produce a
spoken explanation, using text to speech, highlighting
first the “I move” and then saying, while simultaneously
making the arrow right parameter blink, “to the right.”
This would make it very clear how each parameter
contributes to the precise meaning of a command.
Explaining an IF/THEN statement would explain all of
its conditions and actions. Explaining a method would
explain all of its statements. These ideas are explained
in section 5.2.

3. Sharing: Each command is a sharable object with a
canonical textual representation allowing objects to be
turned into text and text into objects. Current versions

1 The original term used was Thought Amplifier, which was not well received.

of AgentSheets and AgentCubes use an XML representation.
Using some browser exploits – the Web had existed for only 2
years at the time – any project, any program, any agent could
be directly shared by dragging it into the AgentSheets Behavior
Exchange webpage [39, 40] or dragging it out of there. This
enabled a high agile style of sharing but it was greeted with a
lot of skepticism in schools, as the practice of easily sharing
products, particularly with identifiable authors, was not
compatible with common school practice.

3. Four Key Affordances for Blocks Programming
The next section puts the AgentSheets exploration of syntactic

obstacles into a much wider context of related work relevant to
end-user programming. Reflecting back now 20 years, the
Composition/Comprehension/Sharing framework captured im-
portant aspects relevant to blocks programming. However, to
meaningfully discuss related work, it makes sense to identify a
minimal set of affordances that need to be provided in order to
be considered a modern blocks programming system. The notion

Figure 7. 1996 Figure with original caption: (1) Comprehension: test the functionality of commands and
rules by moving them from the programming world or collaboration world into the application world
(2a) Direct Composition: select commands and compose them into rules. (2b) Composition by
Example: compose rules by manipulating the application world (3) Share: share with a community of
users entire simulations, agents, rules and commands through the World Wide Web.

of blocks as representations of programming objects alone is
not sufficiently discriminatory as blocks can be found in most
visual programming languages. The value of using the notion
of blocks programming as a mere synonym for visual
programming would not be clear.

When I review the beginnings of AgentSheets in the context
of other visual programming work that was going on at the
time, four affordances stand out as being particularly
important. I may not even have recognized their full
importance at the time, but do so in hindsight. These
affordances have turned out to be key aspects of today's blocks
programming environments. As part of the Compo-
sition/Comprehension/Sharing framework, sharing is a
powerful idea [39, 40], with important consequences for the
cognitive as well as the affective challenges, but it does not
have to be part of the minimal requirements for blocks
programing languages. AgentSheets combined these four key
affordances into a highly accessible visual programming
paradigm. These affordances continue to be at the core of
popular blocks programming languages [41] such as Scratch
[31] and Blockly [42].

1. Blocks are end-user composable. Simple end-user
manipulation techniques, frequently drag-and-drop style
manipulations, are used to compose blocks into
programs represented as linear, multidimensional,
hierarchical or other kinds of organizations. The block
manipulation can be based on two- or three-dimensional
mouse, gesture or virtual reality interfaces. To be usable
by end users, the composition process must include
some scaffolding mechanisms supporting the
syntactically correct composition of blocks into
programs. Examples of such scaffolding mechanisms
include context aware menus (e.g., Alice), animated
cursors (e.g., AgentSheets/AgentCubes), animated
insertion points, enabled/disabled screen regions, and
block shapes/colors (e.g., Scratch) suggesting syntactic
compatibility.

2. Blocks are end-user editable. As interactive objects,
blocks are not just static entities such as icons on a
computer screen or physical objects such as plastic
cards but dynamic objects that contain end-user editable
information. To minimize syntactic challenges, blocks
will typically employ direct manipulation interfaces to
implement edit operations. For instance, a color value
would become end-user editable by using a color picker
(e.g, AgentSheets and eToys) to select a color from a
palette instead of using an editable text field to enter
color values.

3. Blocks can be nested to represent tree structures.
Blocks may be composed recursively into tree structures
to contain blocks, which, in turn, may contain more
blocks. In AgentSheets, a method block contains rule
blocks, containing IF and THEN blocks, containing
condition and action blocks. In Scratch loops contain
instructions.

4. Blocks are arranged geometrically to define syntax.
The semantics of block combinations emerges from
where blocks are connected by having the blocks touch
each other directly or be placed in particular positions
relative to one another (block geometry) rather than
being linked indirectly by additional explicit graphical
connectors like lines (block topology). The definition of
geometry may be aided by jigsaw puzzle appearance
like in Blox Pascal [26] or Scratch, but does not have to
be. This distinguishes modern blocks languages from a
style of visual languages that Lieberman calls “icons on
strings” [43], epitomized by dataflow languages such as
LabView.

Particularly when keeping an eye on educational
applications, the “end user” aspect of these affordances is
incredibly important for modern blocks programming
languages. With the one common goal to make programming
more accessible, blocks programming languages need to
provide some evidence of efficacy to validate “end user”
compliance. Minimally, systems should provide evidence of
end-user usability. In the case of AgentSheets, validation has
gone much further. Related to cognitive challenges, the
Computational Thinking Pattern Analysis research instrument
[44-48] has shown that users, by building games with
AgentSheets, can acquire important Computational Thinking
abstractions, which they can later leverage to build scientific
simulations [49]. Howland has explored similar Computational
Thinking transfer in the context of the FLIP game-
programming tool [50]. Related to affective challenges, the
Retention of Flow research instrument [3] has measured
motivational levels in Hour of Code activities based on
AgentCubes online and shown that the “Make a 3D Frogger”
activity has even exceeded motivational levels of high
production activities such as the code.org Hour of Code Angry
Birds activity [4]. Finally, but perhaps most importantly for
educational applications, the Scalable Game Design project
[51] has shown with large national studies (student n >
10,000), that teachers can be sustainably trained [52] to use
AgentSheets and AgentCubes to the point that they can teach
students to build sophisticated games and simulations.

4. Related Work
This section discusses the genesis of modern blocks

programming languages through the lens of the four
affordances above, which address the core problem of syntactic
challenges. In the context of a variety of concrete programming
languages, the roles of these affordances will become more
apparent. The notion of blocks as objects to be used for
programming emerged early on and evolved gradually, raising
and, to some degree, answering questions such as: What is a
block, what does it look like, how does it get manipulated by a
user, how do blocks relate to each other? Most visual
languages [53], with their aim to make programming more
accessible, include some notion of blocks.

The idea of blocks as visual programming components can
be traced to early interactive computer systems. In 1962, on

one of the first transistor-based computers, a TX-2, Ivan
Sutherland developed the revolutionary Sketchpad CAD
(computer-aided design) program to interactively sketch two-
dimensional shapes [54]. Only two years later, also on a TX-2,
his brother William “Bert” Sutherland employed the idea of
sketching as the root of a two-dimensional programming
language [55] implementing an electric circuit metaphor. That
language was based on data flow and included two-
dimensional components representing mathematical functions
such as addition and multiplication. These components can
certainly be considered blocks that were, to some degree, end-
user composable (affordance #1) but the blocks were not
editable (affordance #2), were not nestable (affordance #3),
and their semantics did not emerge from the block geometry
but rather from the explicit connection of blocks. The Grail
project [56] expanded on this by adding a basic ability to edit
(affordance #2) blocks through tablet input. Remarkably, for
that time, input was pen based including letter recognition.
Later, at a time when through the release of the Apple
Macintosh mice as user interface devices had just started to
become more widely available, Minsky already demonstrated
the use of “finger on screen” gestures [57] as a manipulation
interface which she used to create a visual programming
language layered on top of Logo.

Blocks can represent programming components at syntactic
and semantic levels. For instance the logic objects in Minsky’s
system represent AND, OR and NOT gates that feature well-
established semantics rooted in integrated circuits. In this case,
the shape of a component represents its semantics, i.e., its
meaning and has nothing to do with its syntax, i.e., how it can
be combined with other blocks into a well-formed structure.
An AND gate functions differently from an OR gate and
everybody with an electrical engineering background is able to
instantly tell this difference based on the shape of the block.
The Blox Pascal (Figure 6) system [58], in contrast, was
perhaps the first system shifting radically from a shapes
representing semantics to a shapes representing syntax
visualization model. It employed the notion of jigsaw puzzle
pieces to present visual clues on how components can be
combined. In other words, Blox Pascal uses the shape of blocks
to represent syntax. Most modern blocks programming
systems, including Scratch, are using the shape of blocks to
represent syntax.

This shift from shapes representing semantics to shapes
representing syntax fundamentally changed the notion of visual
programming semantics to one where the semantics of
programs emerged solely on the geometry of blocks
(affordance #4) and not on the use of explicit graphical clues
such as lines connecting blocks. In contrast to “icons on
strings” [43], each modern blocks program consisting of
connected blocks has a canonical gestalt [59]. In
AgentSheets/AgentCubes, blocks vertically aligned imply top-
down sequence. Actions in a THEN part of a rule will be
executed from top to bottom. The geometry of blocks in icons-
on-strings languages is essentially irrelevant. Blocks can be
placed everywhere and then connected with lines. Of course,

most programmers will try to strategically position blocks to
keep connections short and to avoid spaghetti code by
minimizing the number of lines crossing over each other.

Affordance #1 (blocks are end-user composable) and
affordance #4 (blocks are arranged geometrically to define
semantics) in modern blocks programming languages work
hand in hand. That is, modern blocks programming languages
provide manipulation mechanisms including a feedback system
to support the construction of syntactically correct geometry.
Blox Pascal-like programming languages employ the jigsaw
puzzle piece notion to indicate how to properly combine
blocks. As Glinert [58] and later Lewis [60] indicated, the
jigsaw approach is limited by lacking flexibility for connecting
blocks. Each connector can only fit one matching counter
piece. Polymorphic syntax compatibility is difficult to
implement with static shapes. Some [58] have suggested
dynamic shape shifting approaches but without providing
implementations. Lerner et al. [61] and Vasek [62] have
implemented polymorphic block connector shapes.
AgentSheets employs a dynamic cursor approach that shows a
green positive cursor where blocks can be added and a red
negative cursor where they cannot. This approach is further
supported by strategically positioning blocks palettes. In
AgentCubes, the conditions palette (see later in Figure 12) is
immediately next to where conditions go and, likewise, the
actions palette is immediately next to where actions go.

There are many drag-and-drop programming systems using
some kind of blocks, but they only implement a subset of
affordances #1-#4. TORTIS by Perlman [63] was an early
system that came very close to modern blocks programming. In
addition to featuring direct manipulation interfaces consisting
of physical button boxes to control a mechanical turtle,
TORTIS featured a so-called slot machine for programming.
Slot machines were boxes representing procedures defined by
the arrangement of plastic cards. These cards can be considered
blocks in the sense that they represent program instructions
such as move forward or turn. TORTIS featured blocks that
can be composed physically (affordance #1), that have a
limited sense of nesting (cards could not contain other cards
but a card could be a placeholder for another box containing
more cards: affordance #3), and the sequence of program steps
was determined by their geometry (affordance #4). However,
instructions were not editable (affordance #2). ChipWits [64]
was a robot control game providing powerful control flow
based on graphical instruction tiles to program robots. The tiles
were drag-and-drop composable (affordance #1), but individual
tiles were not editable (affordance #2) nor was there a nested
notion of tiles (affordance #3), and the program control flow
was determined by explicit arrows and not the geometric
location of blocks (affordance #4). Logoblocks implemented a
Logo-based visual programming language to control simple
robots [65]. Logoblocks did provide blocks that were drag-and-
drop composable (affordance #1), did have nested blocks, e.g.,
the REPEAT block (affordance #3), and featured blocks that
were arranged geometrically (affordance #4). However, it had
a limited notion of block editability (affordance #2).

Two systems stand out with respect to blocks that are
recursive (affordance #3). Boxer, a programming system aimed
at “nonprogrammers” [66], focused on boxes as nested
containers of code, data or images. Boxes in Boxer are blocks
that can be composed through drag and drop (affordance #1),
can be nested (affordance #3), and are arranged geometrically
(affordance #4). The only shortcoming with respect to modern
blocks programming languages was its lack of end-user editing
(affordance #2). Users could edit the content of a programming
block, but in order to do so they had to know textual
programming. Similarly, Janus [67] had a very strong sense of
recursion. However, it was not focused so much on the
recursive construction of user created programs but the
animated execution of recursive algorithms.

Following AgentSheets, a growing list of modern blocks
programming languages emerged providing all four
affordances. In chronological order of their creation, not
necessarily in order of their publication, some of the important
systems are briefly listed here. eToys is a blocks programming
extension to Squeak [29] that emerged in 1997. Around the
same time the Alice system provided accessible programming
for kids [30]. Scratch became a popular programming tool for
creating and sharing animations [68]. Blockly [42], an open
source blocks programming language, was used in Hour of
Code tutorials and is now used in a number research projects
creating custom blocks programming languages.

Programming by Example (PBE) is the idea that programs
can be automatically created by observing users manipulating
worlds instead of writing programs [69]. The notion of blocks
is somewhat secondary to PBE as, at least initially, the idea
was that programs that were generated through user
manipulations should be hidden from users. Some tried to
avoid the need for explicit program representation by keeping
PBE demonstrations and resulting programs short. Rehearsal
World [38] provided a very simple programming-by-example
approach in which users would demonstrate one step. For
instance, they could start recording, select a button and then
describe the action to associate with that button. Others,
including Halbert [70], explored approaches to make recorded
programs explicitly available to users. His specific aim was to
make PBE more useful by enabling users later to add control
structure to a recorded program. Providing affordances #1 and
#2, one of the few PBE systems that came close to a modern
blocks programming language was Pygmalion [71]. It did
provide the notion of block through its representation of icons
as placeholders for programs. Users could enter data, typically
numbers, which then they could operate on through the explicit
application of operators and record the computation.
Conceptually speaking, nothing would prevent PBE systems
now from being combined with modern blocks programming
languages to provide all four affordances. However, perhaps
due to the perception that modern blocks programming
languages are already highly accessible, PBE research appears
to have lost some momentum particularly for educational
applications.

Not qualifying as modern blocks programming languages
because their semantics do not emerge from the geometry of
blocks (affordance #4), there are numerous visual
programming languages based on the icons-on-strings
approach. The majority of these languages employed
connections between blocks to express either data or control
flow. Data flow has been particularly popular. Especially early
versions of data-flow-based visual programming languages
tried to aim at a really wide scope of application, proposing
data flow as a general purpose programming model. Prograph,
for instance, is a general purpose data flow visual
programming language including strong typing and other
properties of object orientation such as multiple inheritance
[72]. VisaVis [73], employing an implicit type system,
demonstrated that it was able to express algorithms such as
Quicksort more compactly than Prograph. Other systems
developed a more task specific [74] perspective of
programming. DataVis [75], for instance, was a data-flow-
based visual programming environment helping users to create
visualizations of scientific data. In spite of their overall limited
use in Computer Science education, some icons-on-strings
programming languages are very popular. LabView, for
instance, is used by many professional programmers working
on embedded systems and robots [76].

Some visual programming languages have experimented
with different manipulation mechanisms for block composition
(affordance #1). For instance, the CUBE programming
environment [77] has proposed a three-dimensional
programming language to be embedded in a virtual reality
environment. This would allow users to compose Prolog-style,
Horn-clause based programs by grabbing, placing and moving
components in three-dimensional worlds. AgentCubes, the 3D
cousin of AgentSheets, in contrast, enables users to build 3D
worlds but it only uses two-dimensional programming.

Domain-oriented programming and design environments
[78] employ more abstract blocks including appropriate
composition approaches (affordance #1). In these
environments, blocks would not represent the traditional
computer programming language components such as loops or
conditional statements but rather components inspired by
objects known to users in specific problem domains. Similarly,
the process of composing would often not be perceived as or
called programming but as a process of design. Construction
kits, for instance, present users with design components that
can be assembled at a problem domain abstraction level. The
Pinball construction kit [78] provides users pinball components
such as bumpers and flippers to design working pinball
machines. Similarly, the Incredible Machine [79] provides
users with design components that they can arrange into Rube-
Goldberg-like puzzles. AgentCubes online provides an even
wider range in the Consume çè Create spectrum [49] by
integrating ideas of construction kits with blocks programming.
AgentCubes online differentiates between play, design, and
edit mode, providing not only components but also a
mechanism to design and program these components. For
instance, in edit mode users can create a SimCity-like world

consisting of components such as roads, buildings and cars. At
the edit level, users would have to also provide the program to
express the behaviors of these domain-oriented components,
such as the cars following roads. At the design level, other
users could clone a SimCity-like project to design their own
city, similar to using existing SimCity like games. In contrast
to the Pinball Construction Kit and the Incredible Machine,
however, AgentCubes users would still be able to access the
lower level programming if so desired. This may be useful to
mod [80] the component’s behavior.

Domain-orientation is not limited to construction kits but
includes text as well as visual programming-based languages
aimed at specific application domains. StarLogo
TNG/StarLogo Nova is domain oriented towards the end-user
programming of simulations [81]. Similar to AgentSheets and
AgentCubes, this domain-orientation manifests itself in the
support of simulations. Both systems, for instance, scaffold the
typical simulation operations such as being able to count all
instances of a class and plot these numbers or export them to
spreadsheets (see later in Figure 26).

5. Shifting Focus to Semantic and Pragmatic
Obstacles

Now, after 20 years of experience with designing drag-and-
drop blocks programming languages and conducting large
scale, national and international teacher training, I can reflect
on the relevance of affordances and obstacles introduced in
blocks programming. A key problem of the blocks
programming community is its preoccupation with syntactic
affordances and obstacles. The syntactic obstacles of
programming are quite relevant to novice programmers. Typos
involving missing or misplaced special characters such as
semicolons can be the root of deep frustration and may be
responsible for prematurely terminating the interest of novices
in programming. However, the approaches that have emerged
from blocks programming have largely addressed these
syntactic obstacles. Even traditional text-based programming
environments have benefited from approaches such as symbol
completion to manage syntactic obstacles in ways that help
novices and experts alike. There is a common perception
among users that programming has not only become more
accessible but actually is now accessible thanks to blocks
programming. This is simply not true. An analogy may help.
Blocks programming overcomes syntactic obstacles in
programming languages in a way that is similar to how spelling
and grammar checking overcomes syntactic obstacles in
natural languages. But just because we have tools such as
modern word processors, including powerful syntactic tools
such as spell checking does not mean that we become enabled
to write meaningful, interesting, and relevant text. In other
words, if I would instruct a user to “go ahead and write a
bestselling novel now that you have spell checking” most
people would agree that spell checking, as a syntactic
affordance, provides essentially no support towards this
ambitious goal. The same holds true for blocks programming.

With the syntactic challenge essentially being resolved, it is
becoming urgent to dramatically shift research agendas to
focus on the much harder semantic and pragmatic levels of
programming languages.

The following sections describe some of my early
explorations of semantic and pragmatic affordances that are
relevant, but are not necessarily limited to, blocks
programming languages. Importantly, these explorations
should not be considered end points of investigation but more
general research directions, including concrete starting points.
In contrast to syntactic obstacles, some of the semantic and
pragmatic obstacles are not just incrementally harder to
overcome, but at some theoretical level may actually be
impossible to get over in the most general case. For instance,
the halting problem, which applies to semantic program
analysis of Turing complete programming languages, suggests
that there are semantic challenges that are simply undecidable
in ways that would be impossible to overcome with any kind of
computing. While this theoretical barrier exists, it does not
imply the need to give up. Computers have become more
powerful and more expressive. While faster computers alone
cannot overcome theoretical barriers, they can enable new
kinds of user–computer interfaces relevant to programming.
Employing multiple cores, a computer can now efficiently run
multiple threads to constantly analyze complete or partial
programs. Fusing program analysis, program visualization, and
real-time user interfaces, the powerful combination of
computer affordances with human abilities can result in
radically new support mechanisms to make blocks
programming move beyond syntax.

My ultimate goal for blocks programming is to reach the
level of pragmatics described by Webster as “The study of
what words mean in particular situations.” Blocks are just like
words in natural languages. Pragmatic support suggests not
only the notion of blocks executed in the context of other
blocks, but also of blocks executed in specific situations
defined by the aggregation of agents/objects comprising
complex game and simulation worlds. When I program a
Frogger-like game, what will my frog do when it is in this or
that situation in the game? The game worlds need to be
considered part of the programming environment to enable
these kinds of explorations by the user supported by the
computer. The following sections outline approaches that have
been explored to move blocks programming beyond syntax in
AgentSheets [18, 22, 40, 82-85] and AgentCubes [10, 32-35].
As the main tools of the Scalable Game Design curriculum [51,
86], AgentSheets and AgentCubes include the mechanisms
described below. They are being used by students around the
world [87, 88] and have been tested with respect to cognitive
[47] and affective challenges [3].

5.1. Contextualized Explanations: Support
Comprehension

To become more accessible, programs should be able to
explain themselves. This is relevant to every kind of
programming, but essential to blocks programming, which is

aimed at novice programmers with little or no programming
experience.

One approach to increase the self-disclosure [89] of
programs is to make programming languages more oriented
towards natural languages. For instance, AppleScript, a textual
scripting language for MacOS, was intentionally designed to be
more readable by avoiding special characters and through some
degree of verbosity. The relatively high AppleScript readability
is traded off by the obstacle of actually reduced writability.
Figure 8 shows a sample AppleScript-generated dialog based
on this script:

display dialog "Bad news!" with icon
stop buttons "Okey dokey"

Figure 8. AppleScript generated dialog.

Blocks programming has additional options to make
programs more self-disclosable without trading off writability
for readability. Because blocks are objects on the screen, it is
quite simple to add static or dynamic annotation features, such
as tool tips, to programming primitives to explain them. Turkle
has used the notion of “objects to think with” [90], talking
about objects in the game world such as the Logo turtle.
However, blocks programming can extend this notion to the
programming language itself by making its objects, in other
words the blocks, also objects to think with. This kind of
thinking can be supported at three different levels:

Syntax: At the syntactic level, explanation is limited to
language structure. For instance, an explanation could reveal
that a condition is part of an IF statement and should not be
confused with an action that can be executed in the THEN or
ELSE part of a statement. However, this information would
not include attempts to define the meaning of a specific
condition. In most blocks programming languages, this
information is captured statically through the visual
representation of a primitive via a shape (e.g., puzzle piece
approach [26]) or color and/or dynamically, such as through
drag-and-drop feedback suggesting compatibility of blocks.

Semantics: At the level of semantics, explanations are often
implemented through help functions describing the meaning
of a block. For instance, when engaging Block Help in Scratch
to explain the set fisheye effect to 4 command (Figure 9), the
user gets a semantic response in form of a generic help panel
including a brief description of the meaning of the command
and the listing of additional options. Importantly, the
description is not about the specific form, i.e., the particular
situation of the actual command in question. It does not

explain what the “fisheye” effect is or the effect number 4
means in the context of actual situation, e.g., by applying it to
an example shape created by the user.

(a) specific command

(b) generic explanation

Figure 9. A command and its explanation.

Pragmatics: At the level of pragmatics, explanations need to
be constructed for the user from the specific context created
by the user. That is, pragmatic explanations will have to
interpret all the parameters of a block to dynamically generate
an explanation about the settings used by the user. The
pragmatic explanation is not about that type of block in
general but about the specific block that was edited by the
user. The benefit of this context information can be significant
given that some parameters may be difficult to interpret. Users
can experiment with parameters in support of comprehension.
Pragmatic explanations allow blocks to be more compact, as
they allow the use of compact representations, such as the
arrow in Figure 10 indicating a direction to look for other
agents. Experience with more verbose, AppleScript-like,
representations of blocks in AgentSheets [91] suggested that
they were appreciated by first time users but not liked by users
with previous AgentSheets experience. The pragmatic
explanation in Figure 10 is based on a dynamic tool tip-like
annotation combined (Mac only) with a text-to-speech
interface. An explanation produces a sentence based on the
parameters of the block, annotates parts of the sentence in
Karaoke sing-along style, and simultaneously makes the
corresponding parameter blink (e.g., the arrow left cor-
responding to the “to my left” part of the sentence).

Syntactic, semantic and pragmatic explanations are not
mutually exclusive. For instance, AgentSheets also has a
traditional command help system providing generic

information including examples about blocks in addition to the
pragmatic explanation. Blocks programming aimed at novices
should provide all three levels of explanations.

Figure 10. Pragmatic Explanation in AgentSheet.

Pragmatic explanations should include program context. For
instance, to understand how a condition is used in context, one
can select a rule, an IF/THEN statement containing the
condition. Using the pragmatic explain function will produce
an explanation for the entire rule including all of its conditions
and actions but also including potentially implicit aggregation
assumptions (Figure 11). For instance, by default in
AgentSheets, all the conditions of a rule need to be true, i.e.,
they are linked by a Boolean AND. The implicit ANDing of
conditions is made explicit in the explanation text, which is
read out through text-to-speech interfaces producing sentences
such as “If <condition 1> and <condition 2> then …”. As each
condition or action is explained, it is selected and animated in a
Karaoke style highlighting each parameter and its
corresponding text explanation. Rules are tested top to bottom
and actions are executed top to bottom. The explanation can
make these kinds of assumptions explicit to a novice user.

Figure 11. Explanation of an IF/THEN rule making a car fall down
when there is nothing below the car.

Syntonic (the projection of oneself into something or
someone else) explanations can help users to assume the
perspective of the object to be programmed [92]. Body-
syntonicity, a term suggested by Papert [93], describes
experiences that are related to one’s knowledge and sense
about one’s body. In the context of Logo turtle programming,
Papert surmised that when students can project themselves into
the turtle they would experience fewer problems with
programming it. In my work with AgentSheets, I found
confusion about perspective was often the source of
programming problems. For instance, when programming a
collision between a car and a frog in a Frogger-like game,
students would often put code that was supposed to be in the
frog into the car and vice versa. A syntonic approach tries to
compel students to become the frog when they program it and
to become the car when they program the car. For similar
reasons, some science teachers introduced role-play games in
their gym class for the student to experience being the car and
the frog. I found that some degree of syntonicity could be
induced by using explanatory language worded in ways
suggesting to be the object to be programmed. A non-syntonic

explanation of the condition in Figure 10 could be “This
condition is true if the agent sees another agent looking like
this to its left.” The syntonic explanation, in contrast, suggests
projection of the programmer into the object to be programmed
by employing terms such as “I” and “my” resulting in “True, if
I see to my left an agent that looks like this.”

Figure 12. AgentCubes putting car into first person mode.

Programming environments can actively support body
syntonicity through camera perspectives. Alice [30], for
instance, does this by using coordinate systems that are object-
relative. AgentCubes, as 3D Computational Thinking Tool,
moves one step beyond the AgentSheets syntonic explanations
by literally allowing the programmer to assume the perspective
of agents to be programmed through camera operations. Every
agent in AgentCubes can be selected and be set into first
person camera mode. This can be done too in other 3D tools
but typically requires more than a just selecting an agent and
pressing the first person button. In Alice, a user has to write a
simple program to set the so-called vehicle of the camera to be
the object to be set into first person. For instance, in a Frogger-
like game, the programmer can become one of the objects that
move, such as the frog or the car (Figure 12), but also part of
the scenery, such as agents representing the road or the river.
The programmer will now see through the eyes of the agent.
When the agent moves and turns then the camera will move
and rotate with the agent. This can result in body syntonicity,
helping programmers to negotiate intricacies of nested
coordinate systems.

5.2. Conversational Programming: Help Predict the
Future Proactively

Although computers have become incredibly powerful,
debugging programs is still an arduous task. Imagine that a
programmer is working on a game or simulation based on
many objects, but the program is not behaving correctly and
requires debugging. Pea [94] conceptualizes the process of
debugging as “systematic efforts to eliminate discrepancies
between the intended outcomes of a program [the program we
want] and those brought through the current version of the
program [the program we have].” There is a rich body of

research exploring debugging and developing highly
sophisticated debugging tools. For instance, with the ZStep
system, Lieberman has explored an approach to locate bugs in
large code bases [95]. However, most of these tools are aimed
at professional programmers and not at end-user programmers
[7].

The computer, of course, cannot read the mind of users to
access the programs they want. If it could there would be no
need for the user to write a program to begin with. However,
consistent with the notion of pragmatics, the computer can
show what code means in particular situation. Visualizing the
pragmatics of code, i.e., the program you have, users may be
able to perceive discrepancies to the program they want.

Debugging tools for end-user programmers need to be
simplified and should focus on strategies either preventing
bugs or at least minimizing the time between creating a bug
and being able to experience its consequences. The debugging
of blocks programs can be supported at the syntactic, semantic
and pragmatic levels.

Syntax: Fortunately, little work is required at the syntactic
level because in most cases it can be reasonably safely
assumed that programs are syntactically correct.

Semantics: Most blocks programming languages, including
Scratch and AgentSheets, provide the affordance of testing
blocks individually. Actions can be executed to explore their
effects. Conditions can be tested to see if they are true or false.
Live Programming [96-98], also found in most blocks
programming languages, enables users to experience the
outcome of a program by changing in real time – live – a
running program.

Pragmatics: Applying the notion of pragmatics from natural
languages, “The study of what words mean in particular
situations,” to programming languages results in the study of
what programs, or fragments of programs, mean in particular
situations. Pragmatics affordances such as Conversational
Programming [99, 100] help programmers to explore the
meaning of programs in the context of very specific situations.
In order to establish the notion of a situation, a programming
environment needs to be deeply connected to the
representation of a simulation world. For instance, it must be
possible for a user to arrange objects into a situation and
define an operational perspective define by selecting objects.
In a Pac-Man game, it must be possible for a user to select one
of the ghosts in order to experience the meaning of its
programming from a very specific context of being at a certain
location in a maze with a Pac-Man and potentially many other
ghosts.

My experience with semantic-level debugging tools is that
they are best in the hands of experienced programmers who are
typically not the prime audience of blocks programming. For
instance, programmers used to programming environments
providing Read Evaluate Print Loop (REPL) functionality
found in languages such as Lisp, JavaScript and Python,
understand the benefits of testing programs incrementally.
Most blocks programming environments already do, or easily

could, support this type incremental testing. These functions
have existed in AgentSheets for over 20 years, but I have found
that without highly explicit prompting, typical students and
teachers, by and large, simply did not use them. The main
problem is not that novices have a hard time to use debugging
functions but that they do not anticipate the usefulness or even
the presence of such functions. Instead, they are more likely to
explore variations of their program in the hope to find a fix
without planning to invoke some kind of debugging tools.

If users do not take the initiative for debugging, then
computers should by becoming more proactive. After all, while
users are contemplating options to remove discrepancies
between the program they want and the one they have,
computers, in spite of their multi-gigahertz, multi-core
supercomputer capabilities, offer essentially no assistance.
Conversational Programming [99, 100] is a proactive approach
to harness this computational power to annotate programs with
pragmatic information, i.e., the study of what the program
means in a particular situation (Figure 13). The situation is
described by an agent that is selected inside a complex
simulation world. For instance, the user may have selected the
frog inside a Frogger-like game. The situation combines all the
state information, including the internal state of the frog and
also the arrangement and states of all the other agents in the
world. Conversational Programming is acting essentially like a
proactive programming peer providing pragmatic information
to the user. Even when the game is not running, Conversational
Programming analyzes the program of the user-selected object
in order to provide pragmatic feedback to the user by
annotating that program (Figure 12 and 13).

Figure 13. Conversational Programming. A Conversational Program-
ming Agent (CPA) executes the program and provides rich,
pragmatic feedback to the programmer relevant to objects of interest
to the programmer.

Users can experience pragmatics by exploring various
situations through the interaction with agents and observation
how the program will respond differently. For instance, the
user could drag the frog next to red truck (Figure 14) to
observe which conditions will be true and which IF/THEN
rules will fire. This helps users to understand why a certain rule
does fire or why it does not. Rules that do not fire show why
they do not fire, e.g., because one of their conditions is false.

The annotation includes detailed information of which
condition was false resulting in the entire rule not being
executable. Users can shift perspective by selecting different
agents. How will the red truck react to the frog moving to its
right? The Conversational Programming annotations are
specific to an agent instance, not its class. If a game includes
multiple frogs, then selecting different frogs will annotate the
program of each frog program according to the specific
situation that frog is in.

Figure 14. Conversational Programming annotates programs proact-
ively to show the future of the simulation. In this example, the next to
last rule is highlighted in green indicating that this rule will be
executed. The frog is about to collide with the red truck approaching
from the left. A sound will be played, the frog will turn into a bloody
frog, and then the game is reset.

The proactive nature of Conversational Programming can
answer questions that users have not asked yet or would not be
likely to ask through more traditional, passive semantic
debugging aids. Some consider this a type of pre-bugging
[101] (proactive debugging tools). In essence, Conversational
Programming interprets the current state of a simulation and
computes the next step of the simulation from the viewpoint of
an individual agent one step into the future.

Annotations may not be static because many agent behaviors
include non-deterministic or time dependent code, e.g., code
depending on AgentSheets/AgentCubes conditions such as
percentChance(<percentage>) or onceEvery (<time>).
Employing these kinds of conditions results in animated
annotations that show the frequency of a code execution path.
For instance, in a complex IF/THEN/ELSE IF expression with
a 10% and a 90% case, the 90% case would turn green more
frequently than the 10% one. If this dynamic annotation
becomes too much, users can simply deselect agents to turn
annotations off.

Conversational Programming benefits from the simple rule
structure of AgentSheets/AgentCubes. In contrast to the
general Halting Problem for most AgenTalk programs, it can
be assumed, but not determined, that the program will finish.
That is, each agent evaluates a certain number of conditions
resulting in the execution of a certain number of actions. For
these cases, the visualization makes sense. However, even in
AgenTalk, users can program recursive functions, making it
impossible to determine if the program would ever halt.
Nonetheless, even if it cannot be determined that a program
would halt, Conversational Programming could be
implemented in general purpose programming languages. This
would make an interesting area for future research.

AgentCubes supports both Live Programming and
Conversational Programming. When a simulation is running,
because of Live Programming [96, 102], users can change the
code to experience the consequence of these changes in real
time. However, when a simulation is not running, because of
Conversational Programming, users still see the consequences
of their program changes. Conversational Programming is an
extension to the Live Programming framework providing more
control to users. In Live Programming, it can be difficult to
navigate to a very specific program state to understand the
precise effects of the program at that one state. Conversational
Programming, in contrast, allows the experimentation with
states by suggesting the future of the program without actually
transforming the current state into the future one. In order to
avoid tainting the future, or the present, this transformation
needs to be done carefully, without creating any side effects.

5.3. Live Palettes: Make Programming More
Serendipitous

Pragmatic support of programming should facilitate
serendipitous discovery helping with the composition of blocks
(affordance #1). The purpose of a programming block palette is
to provide a menu of relevant language primitives to users.
Syntactic, semantics, and pragmatics levels apply to suggest
approaches that help users to locate relevant blocks. At the
syntactic level, separate palettes, color-coding or tab based
interfaces can be used to sort fundamental categories of blocks,
e.g., conditions versus actions in AgentSheets/AgentCubes. At
the semantics level, it typically makes sense to group blocks
into commands with related meaning. At the pragmatics level,
again, the main idea is to leverage the notion of context by
facilitating the location of code relevant to specific situations.

Assuming that the world is a complex collection of agents,
including one selected by the user, pragmatic programming
block palettes transform from passive containers of blocks to
live palettes serving as active exploration sandboxes.
Identically to Conversational Programming, condition blocks,
for instance, are annotated to show if they are true or false if
tested by the currently selected agent in its particular situation.
The element of serendipity comes into play through the
proactive nature of Live Palettes. All conditions in the
condition palette can be annotated efficiently by the computer.
While some programming environments, including
AgentSheets/AgentCubes and Scratch, support the evaluation
of individual conditions, the reality is that few users use this
feature to begin with, and out of the users employing the
feature even fewer would regularly cycle through all conditions
just to see which one may be true. This is also a good example
of how the power of the computer can be harnessed to
proactively support the programming process.

Figures 15–17 show how the conditions palette is reacting to
the user’s changes of the situation by moving the frog in the
world. First, the frog is below the road, then the user drags it
onto the first lane of the road and finally to the second lane of
the road. While the user is dragging the frog around in the
world the See(left, “red truck”) and Stacked (“immediately
above”) conditions are updated by having their name turn
green or red to reflect the truth value of the condition. This
may provide users serendipitous information that could be
relevant to design and implementation of programs based on
situations that the user is exploring.

Pragmatics makes blocks in block palettes come alive in way
that helps with composition of blocks (affordance #1). They
are no longer just dead pieces of code but, instead, are
dynamically explored as potential candidates for code that
needs to be written. In other words, with Live Palettes the
execution of blocks is already relevant to the decision process
of the user before this user has even written any code. The
annotation needs to be subtle to avoid overwhelming users with
potentially irrelevant information. Simply using colors in the
name of blocks has turned out to be sufficient to serve as
serendipitous input without becoming intrusive.

An important concept to convey this type of pragmatic
information is the responsiveness of the user interface. In his
seminal work, Michotte [103] explored how people react to
visual stimuli and noticed that people can actually perceive
causality, even if connections between cause and effect are
made up, as long as the manifestations of the effects satisfy
narrow timing constraints. Similarly, we found that when
blocks do react swiftly to situation changes, then humans are
able to perceive a surprisingly large number of parallel changes
that may result from this change. This is a good example of
combining computer affordances (using parallel threads to
bring block palettes to life) with human abilities (to perceive
causal connections between manipulating a situation and
perceiving changes) in order to move beyond syntactic support.

Figure 15. Frog is about to cross the street. Stacked (immediately
above, ground) is true.; See (left, truck) is false.

Figure 16. Frog is on street next to truck. Stacked (immediately
above, ground) is false; See (left, truck) is true.

Figure 17. Frog is on street without a truck heading towards it.
Stacked (immediately above, ground) is false; See (left, truck) is false

6. Computational Thinking Tools
Just as much as the research on blocks programming has not

received enough attention at the language level for issues of
semantics and pragmatics, there is an equally critical blind spot
at the tool level. Going back to the Cognitive/Affective
Challenges space (Figure 1), tools are essential to mitigate
some of these challenges, but the very notion of programming
tools may be too narrow, particularly in the context of
Computer Science education. The goal of Computer Science
education is not to write programs but to become
Computational Thinkers [104]. It is gradually becoming more
apparent that coding does not automatically lead to
Computational Thinking. Duncan [105] summarized a pilot
study with primary school students in New Zealand with

“We had hoped that Computational Thinking skills would be
taught indirectly by teaching programming and other topics in
computing, but from our initial observations this may not be the
case.”

The Computational Thinking Process starts before writing
the first line of code. Over many years, the Scalable Game
Design project [51] has systematically trained teachers in
Computational Thinking and evaluated the efficacy of these
approaches. To adopt to the needs of Computer Science
education, almost as a side effect, AgentSheets and
AgentCubes have gradually shifted from being programming
tools to becoming Computational Thinking Tools [37]. In

contrast to traditional programming tools, Computational
Thinking Tools address a much wider spectrum of the
cognitive challenges (Figure 18) and provide support for all
three stages of the Computational Thinking Process (Figure
19).

Figure 18. Computational Thinking Tools in the Cognitive/Affective
Challenges space.

Figure 19. The Computational Thinking Process.

The term Computational Thinking (CT), popularized by
Wing [104], had previously been employed by Papert in the
inaugural issue of Mathematics Education [106]. Papert
considered the goal of CT to forge explicative ideas through
the use of computers. Employing computing, he argued, could
result in ideas that are more accessible and powerful.
Meanwhile, numerous papers [107] and reports have created
many different definitions of CT. Recently, Wing followed up
her seminal call for action paper with a concise operational
definition of CT [108]:

 “Computational thinking is the thought processes involved in
formulating a problem and expressing its solution(s) in such a
way that a computer—human or machine—can effectively carry
out.”

Based on Wing’s definition, the Computational Thinking
Process can be segmented into three stages. The example in

Figure 19 of a mudslide simulation is used to illustrate the
three Computational Thinking Process stages.

1. Problem Formulation (Abstraction): Problem
formulation attempts to conceptualize a problem
verbally, e.g., by trying to formulate a question such as
“How does a mudslide work?,” or through visual
thinking [109], e.g., by drawing a diagram identifying
objects and relationships.

2. Solution Expression (Automation): The solution needs
to be expressed in a non-ambiguous way so that the
computer can carry it out. Computer programming
enables this expression. A simple mudslide model can
be expressed with just a handful of rules. The one rule
in Figure 19 expresses a simple model of gravity: if
there is nothing below a mud particle it will drop down.

3. Execution & Evaluation (Analysis). The solution gets
executed by the computer in ways that show the direct
consequences of one’s own thinking. Visualizations, for
instance the representation of pressure values in the
mudslide as colors, support the evaluation of solutions.

The vision for Computational Thinking Tools [37] is to
support and integrate the three stages of the Computational
Thinking Process. Certainly, any kind of programming tool can
be employed for Computational Thinking. End-user
programming tools, for instance, are focused on the support of
the solution expression by making programming more
accessible. However, Computational Thinking Tools should go
further by providing additional support for the problem
formulation as well as the problem execution & evaluation
stages of the Computational Thinking Process.

Of course, Computational Thinking can be stimulated by
programming, but a trip from Chicago to Los Angeles can also
be achieved by walking. Ultimately, one needs to better
understand the precise goals and potential overhead of specific
approaches. For instance, if the goal of programming is
becoming a professional programmer versus a computational
thinker, then different tools and different scaffolding [110]
approaches may be necessary. When computing-skeptical
STEM teachers see simple applications such as a two species
ecosystem simulations turn into two hundred of lines of code,
then one should not be too surprised that the adoption of
programming in STEM courses is still abysmal. Blocks
programming will not help either if the result is a similarly
complex deeply nested Escher-esque color puzzle.

The different needs for programming in education pulls
programming environments into two very different directions.
Programming tools are general purpose programming
environments that can be used for a large variety of projects,
but most interesting programs quickly become elaborate
because of accidental complexity [111]. Accidental complexity
is complexity that cannot be traced back to the original
problem. In contrast to intrinsic complexity, accidental
complexity was added through a solution process involving
certain tools or approaches. Computational Thinking Tools,

with their pronounced goal to support the Computational
Thinking Process, have a more narrow range of projects, but
they manage coding overhead in ways so that simple
Computational Thinking can be expressed with little code. Of
course, programming tools could be used for Computational
Thinking or Computational Thinking Tools could be used to
create general-purpose projects, but in either case the mismatch
between tool and application is likely to cause excessive
accidental complexity. This complexity, in turn, may simply be
too much to justify educational uses.

Computational Thinking Tools and Programming Tools can
be integrated technically or pedagogically. While most
beginning mandatory courses with highly constrained time
budgets may initially be best off to start with Computational
Thinking Tools, it does often makes sense in later elective
courses to switch to Programming Tools. There are many ways
to technically integrate both kinds of tools. An early version of
AgentSheets included an extremely powerful but also
somewhat dangerous Lisp block allowing advanced users to
enter arbitrary Common Lisp to be integrated into their Blocks
program. With the GP system, Mönig et al. are going a
different route by attempting to create a general purpose blocks
programming language powerful enough to implement itself
[112]. Alternatively, pedagogical integration would employ
scaffolding approaches to transition from a Computational
Thinking Tool to a Programming Tool without actually
integrating tools technically. An example of a scaffolding
approach is that AgentSheets/AgentCubes can convert blocks
programs into Java and JavaScript sources respectfully. This
can help students to understand how to make the transition.

AgentSheets and AgentCubes are Computational Thinking
Tools. A first blocks programming prototype of AgentSheets
implemented a large subset of Common Lisp concepts in order
to become a programming tool. However, beyond the syntactic
support of programming, which was important, it gradually
became clear that, when focusing more on semantic and even
pragmatic issues, it would be possible to create a conceptually
different tool that could better support the problem analysis,
solution formulation, and project expression stages of the
Computational Thinking Process [104, 108]. A key principle of
Computational Thinking Tools is that they should reduce the
need for accidental complexity as much as possible. Guzdial
reached a similar conclusion in the context of computing
education [113] by suggesting that “If you want students to use
programming to learn something else [e.g., how to author a
simulation] then limit how much programming you use.” The
affordances related to the reduction of accidental complexity
can be understood at three different levels:

Syntax: At the syntactic level, the form of a program can be
controlled through disclosure mechanisms. For instance, just
like the &optional directive in Common Lisp declares
optional parameters, blocks in AgentSheets/AgentCubes can
have optional parameters. The visibility of these optional
parameters is controlled through disclosure mechanisms
(Figure 20). Clicking a disclosure triangle will show/hide the

optional parameters. Additionally, method blocks, containing
rules, have disclosure triangles to show/hide their content.
When the rules are hidden, a method will still show its
documentation, turning the disclosure mechanism into a
switch between viewing method implementation or only
specification. While there are many textual programming
languages that feature optional or named parameters, this
concept appears not to have found widespread acceptance into
other blocks programming languages, with the exceptions of
blocks programming languages such as Alice [30] and Snap!
The optional parameter mechanism is relevant to the notion of
accidental complexity in the sense that optional parameters are
typically chosen to capture less important or even qualitatively
different parameters that may not be relevant to understand the
main function of a program. For instance, in Agent-
Sheets/AgentCubes, in contrast to regular parameters
describing what should be done, optional parameters are used
to describe how it should be done. For instance, the required
direction parameter in the Move action describes which
direction the agent will move, whereas the animation time and
animator style parameters only describe animation details of
the move transition.

Figure 20. “move” action non disclosed (left). “move” action dis-
closed, showing information relevant for animation control (right).

Semantics: At the level of semantics, domain-orientation
[114] is the provision of functions that reflect the needs of
specific application domains. An Application Programming
Interface (API) centered around related functions is an
example. For instance, a set of functions to control a robot can
be a domain-oriented API where the domain would be
robotics. APIs are at the root of practically all domain-oriented
languages, block-based or not. The main angle to reduce
accidental complexity through domain-orientation is by
eliminating the need build functions from the ground up. If a
programming environment is frequently used to create
scientific visualizations, then it should include domain-
orientation offered through functions highly relevant and
usable to create these visualizations.

Pragmatics: According to Webster, in the context of natural
languages, pragmatics is about “the study of what words mean
in particular situations.” In programming, this could be
modified to “the study of what code means in particular
situations.” For pragmatic support, Computational Thinking
Tools are challenged to aid programmers to figure out what
code does in specific situations. In a game context this means,
for instance, that programmers should be able to manipulation
the state of a game, i.e., the situation, and get tools that show
potential impact on the execution of code. At the level of
pragmatics, accidental complexity that gets in the way of

understanding the meaning of code in the context of specific
situations should be reduced. To that end, it is important to
understand the degree of structure of a situation. A situation in
Scratch is the 2D stage containing sprites with certain
locations and orientations. Similarly, a situation in Alice is a
3D world containing 3D objects. In both cases, however, the
situations are essentially unstructured. The locations of 2D/3D
objects have no intrinsic meaning. AgentCubes, in contrast,
has a highly structured situation, i.e., the AgentCubes, which
is a grid of rows, columns, and layers containing stacks of
agents. The AgentCubes world provides a user interface
empowering users to edit these 3D grids by placing agents,
moving and copying agents similarly to how players edit
Minecraft worlds. As one can witness with spreadsheets,
structured situations can reduce accidental complexity
dramatically because with spreadsheets no part of the user
code is concerned with the maintenance of the cell structure.
Spreadsheet formulas are merely capturing the functional
dependence of values contained in cells without the need to
understand how values are presented to users [115, 116].

The 15 squares puzzle, shown in Figure 21, is a classic
children’s toy that can be used to further illustrate the benefits
of pragmatics. The game consists of sliding 15 numbered
squares into a sorted arrangement, 1-15, in a 4 x 4 grid. Many
computer program implementations of the game exist. From a
Computational Thinking point of view, the core idea is simple:
click a square next to the hole to make it slide into the hole.

Figure 21. 15 squares puzzle.

From a coding point of view, however, efforts can vary
widely. A Python program to implement the “click to slide”
functionality (e.g., [117]) quickly runs into hundreds of lines of
code, not including the functionality to solve the puzzle.
Similar programs, written in other programming languages
such as Java and even in blocks programming languages, are of
comparable size. Indeed, some blocks programming languages
such as Scratch with missing class/instance object models often
result in even more complex programs because of duplications
[118]. The point here is not to be negative regarding
programming tools, but to simply suggest that accidental
complexity can be a huge overhead for Computational
Thinking applications that is not automatically solved through
blocks programming.

Employing AgentCubes as Computational Thinking Tool,
the implementation of the 15 squares puzzle will include very
little coding overhead. The “click to slide” functionality
requires only four simple rules checking if there is an empty

spot adjacent to the clicked square and, if so, move into that
spot (Figure 22). Additionally, selecting squares activates
Conversational Programming (square #11 was clicked) and
highlights the fact that #11 can go left. Comparing Python to
AgentCubes seems hardly fair. In AgentCubes, the notion of a
grid, animations, and even numbered squares serve as situation
structure dramatically reducing accidental complexity in a
similar way that spreadsheets allow its users to focus on math.
Additional affordances, such as the ability to access attributes
of agents through spatial references, like in spreadsheets, and
to express complex parallel animations, facilitate the creation
of a wide range of projects from simple particle systems to
games including sophisticated AI with very little code.

Figure 22. Four rules for 15 puzzle to make agent next to hole move
into hole.

Each affordance has some limitations. Spreadsheets are the
most frequently used end-user programming tools in the world,
but they are not general purpose programming tools. Nobody
would want to write a compiler with Microsoft Excel even
though it may theoretically be possible. Looking at some of the
incredibly elaborate designs that motivated users come up with,
e.g., creating sophisticated machines by tediously arranging
thousands of blocks in Minecraft, it is sometimes not clear
what kinds of applications tools will afford. The 2D/3D grid
structure in AgentSheets and AgentCubes is not well suited for
applications requiring the computation of arbitrary trajectories.
This would make it difficult to animate to trajectory of a
cannonball. Even these limitations, however, have not stopped
some AgentSheets users from implementing projects such as a
three-body problem that would appear to be clear mismatches
with the affordances of the tool.

A playable Pac-Man game (Figure 23), including endgame
detection and collaborative AI [119] making ghosts collaborate
with each other, can be created in just 10 rules (Figure 24).
Due to collaborative diffusion, this game actually includes
more sophisticated AI than the original game.

Figure 23. Pac-Man Game World.

These 10 rules implement:

• Collaborative Diffusion: [119, 120]: rule 1 of the
background tile diffusing the scent of the Pac-Man as
(variable P) and rule 2 of the pellet.

• Ghost hill climbing: rule 1 of the ghost.

• Game won detection: rule 1 of the Pac-Man.

• Game lost detection: rule 2 of the Pac-Man.

• Pac-Man cursor key control: rules 3-6 of Pac-Man.

• Pellets being eaten: Pellet rule 2.

To start the diffusion the Pac-Man agent is given a p value of
1000. (Variables are case-insensitive, so P and p denote the
same variable.) This is done through an agent attribute editor
allowing users to edit arbitrary agent attributes. No
programming is required to set agent attributes. They can be set
and will be saved when the world containing the agent is
saved.

The Flabby Bird 3D game (Figure 25) illustrates a volume
scroller game (generalizing 2D side scroller games). A basic
version of this game can also be created in 10 rules. This kind
of game would be nearly impossible to create with 2D tools
such as Scratch, but also would be difficult to create with 3D
tools such as Alice.

Game design is highly motivational, but not the focus of
Computational Thinking. AgentSheets and AgentCubes are not
just about game design but about learning Computational
Thinking patterns in ways the that they can be leveraged by
students to build STEM simulations. The Predator/Prey project
(Figure 26) can also built with just 10 rules to investigate the
stability of ecosystems. AgentCubes includes plotting tools to
visualize data and to export it to other tools such as Microsoft
Excel or Google Sheets for further analysis.

Figure 24. Complete Pac-Man game including collaborative AI in
just 10 rules.

Figure 25. AgentCubes Flabby Bird 3D game.

Figure 26. Predator Prey simulation including data visualization in
AgentCubes.

There are downsides to Computational Thinking Tools. The
scaffolding employed to make Computational Thinking Tools
practical for classroom use may get in the way of general-
purpose programming. This is a trade-off. Similarly,
spreadsheets would not be well-suited for creating games such
as billiards or Pong. And yet, spreadsheets are the number one
end-user programming tool. At one point, AgentSheets did
have graphs, but it felt like a confusing kitchen sink. Over
time, these odd features got removed from AgentSheets. Other
data structures are intrinsic to the AgentSheets/AgentCubes
world. An array is a row, column, or set of layers of an
AgentCubes world. In other words, the world and its structure
are the data structure. There are 1D, 2D, 3D arrays that are
similar to spreadsheets. Additionally, each cell can contain
stacks of agents. As long as users can establish a conceptual
match between the problem structure and the 3D row, column,
layer, stacks metaphor, AgentCubes can serve as an efficient
thinking and programming tool. But there are clear limits when
additional functionality begins to erode affordances. Some-
times more is less.

The threshold between programming tool and a Com-
putational Thinking Tool is not what can and cannot be done
conceptually but what can be done practically from a

classroom point of view. Advanced students have built
sophisticated simulations of 3-body problems in AgentSheets.
Using a fine grid with hundreds of thousands of agents, this
can be done, but it goes against the grain of the solution
structure implied by AgentSheets. Just as a scientific calculator
can be built with millions of Minecraft blocks by a user with
thousands of hours at his hands, these solutions could be built
with Computational Thinking Tools, but they are not practical
in a traditional educational context.

Just as the 3D cube with stack structures provides a spatial
scaffold in the AgentSheets/AgentCubes programming lan-
guage, AgenTalk is a language scaffold that removes many of
the intricacies (but also affordances) of general-purpose
programming languages. The rule-based nature of AgenTalk is
surprisingly versatile. Rules can be grouped into methods that
can be called through actions. Method calls can be recursive.
Event-based programming (e.g., mouse clicks and timers) can
be expressed. Cloud variables can be used to exchange values
through the network to create distributed simulations. The
combination of these features make it possible to cover the
entire spectrum of Computational Thinking concepts, ranging
from procedural abstractions over iterations through net-
working.

Computational Thinking Tools are specifically designed to
support Computational Thinkers in schools. They scaffold the
entire Computational Thinking Process. AgentSheets and
AgentCubes are presented here as early examples of
Computational Thinking Tools. The main point of this section
is to suggest a new research direction and to illustrate the
concept with a concrete starting point.

7. Conclusions
The blocks programming community, by and large, has been

preoccupied with syntactic affordances of programming
environments. It is time to shift research agendas towards the
systematic exploration of semantic and pragmatic affordances
of blocks programming. Syntactic affordances of programing
languages can be compared to spell and grammar checking in
word processing. This type of support is highly useful but,
computationally speaking, trivial compared to the challenges
ahead attempting to support users to produce meaningful
programs. The most daunting challenge will be to support
pragmatics, that is the study of what code means in
particular situations. To overcome this challenge, new
approaches require the combination of various promising
approaches, including program analysis, program visualization,
and real-time user interfaces.

A promising direction may be the exploration of what
exactly situations really are in Computational Thinking Tools.
In AgentCubes, situations are visible game or simulation states
including complex 3D worlds that users can interact with. A
situation should be a tight integration of game and program
state allowing programmers to navigate fluidly in space and
time from the code as well as from a world point of view.
Select objects in scenes, change properties of objects, and
observe the consequence on the program execution. Select

programming primitive and explore their consequent onto the
world. New research will likely reconceptualize deep
connections between the program state and the game world.

Twenty years ago, AgentSheets combined four key
affordances to create an early form of blocks programming.
After initially focusing on syntactic affordances, using
AgentSheets in computer science education, I have
experimented with approaches to move beyond syntax to
address semantic and pragmatic obstacles. Three approaches
are described: (1) Contextualized Explanations to support
comprehension, (2) Conversational Programming to help
predict the future proactively, and (3) Live Palettes to make
programming more serendipitous. Additionally the vision of
Computational Thinking Tools as a means to support
Computational Thinking Processes while reducing accidental
complexity emerging from coding has been outlined.

Acknowledgments
This research has been funded by the National Science

Foundation (including projects EIA-0205625, DMI-0232669,
DMI-0233028, DMI-0349663, SCI-0537341, IIP-0712571,
DRL-0833612, IIP-0848962, IIP-1014249, IIP-112738, CNS-
1138526, DMI-9761360, IIP-1345523, DMI-9901678, DRL-
1312129), the National Institutes of Health, Apple, Google, the
AMD Foundation, the Hasler Foundation, and the Swiss
National Science Foundation. I wish to thank my advisor, my
collaborators, my graduate students, and all the teachers and
students for their amazing support in the last 20 years.

References
[1] “Women Who Choose Computer Science – What Really Matters, The

Critical Role of Encouragement and Exposure,” Google Report, May
26, 2014.

[2] A. Repenning, C. Smith, B. Owen, and N. Repenning, “AgentCubes:
Enabling 3D Creativity by Addressing Cognitive and Affective
Programming Challenges,” presented at the World Conference on
Educational Media and Technology, EdMedia 2012, Denver, Colorado,
USA, 2012, pp. 2762-2771.

[3] A. Repenning, A. Basawapatna, D. Assaf, C. Maiello, and N. Escherle,
“Retention of Flow: Evaluating a Computer Science Education Week
Activity,” Proceedings of the 47th ACM Technical Symposium on
Computing Science Education (SIGCSE '16), Memphis, Tennessee,
2016, pp. 633-638.

[4] A. Repenning and A. Basawapatna, “Drops and Kinks: Modeling the
Retention of Flow for Hour of Code Style Tutorials,” Proceedings of the
11th Workshop in Primary and Secondary Computing Education
(WiPSCE '16), Münster, Germany, 2016, pp. 76-79.

[5] A. Basawapatna and A. Repenning, “Employing Retention of Flow to
Improve Online Tutorials,” Proceedings of the 48th ACM Technical
Symposium on Computing Science Education (SIGCSE '17), Seattle,
Washington, USA, 2017, pp 63-68.

[6] D. Webb, A. Repenning, and K. Koh, “Toward an Emergent Theory of
Broadening Participation in Computer Science Education,” in
Proceedings of the 43rd ACM Technical Symposium on Computing
Science Education (SIGCSE '12), Raleigh, North Carolina, USA, 2012,
pp..173-178.

[7] H. Lieberman, F. Paternò, and V. Wulf, Eds., End User Development.
Springer, 2006, 492 Pages

[8] T. Toffoli and N. Margolus, Cellular Automata Machines. Cambridge,
MA: MIT Press, 1987.

[9] M. Resnick, “StarLogo: an environment for decentralized modeling and
decentralized thinking,” Conference Companion on Human Factors in

Computing Systems (CHI '96), Vancouver, British Columbia, Canada,
1996, pp. 11-12.

[10] A. Repenning, “Making Programming Accessible and Exciting,” IEEE
Computer, vol. 18, pp. 78-81, 2013.

[11] N. Shu, Visual Programming. New York: Van Nostrand Reinhold
Company, 1988.

[12] B. Bell and C. Lewis, "ChemTrains: A Language for Creating Behaving
Pictures," in IEEE Workshop on Visual Languages, Bergen, Norway,
1993, pp. 188-195.

[13] G. W. Furnas, “New Graphical Reasoning Models for Understanding
Graphical Interfaces,” Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '91), New Orleans, LA,
1991, pp. 71-78.

[14] R. Kirsch, A., “Computer Interpretation of English and Text and Picture
Patterns,” IEEE Transactions on Electronic Computers, vol. 13, pp.
363-376, 1964.

[15] A. Repenning, “Creating User Interfaces with Agentsheets,” in
Proceedings of the 1991 Symposium on Applied Computing, Kansas
City, MO, 1991, pp. 190-196.

[16] A. Repenning, “Repräsentation von graphischen Objekten,” Asea Brown
Boveri Research Center, Artificial Intelligence group, Daetwill 5405,
Switzerland, Research Report CRB 87-84 C, June, 1987.

[17] G. K. Zipf, Human Behavior and the Principle of Least Effort. New
York: Hafner Publishing Company, 1972.

[18] A. Repenning, “Agentsheets: A Tool for Building Domain-Oriented
Dynamic, Visual Environments,” Department of Computer Science,
University of Colorado at Boulder, 1993.

[19] J. C. Spohrer, “ATG Education Research — The Authoring Tools
Thread,” Apple Computer, 1998.

[20] D. C. Smith, A. Cypher, and J. Spohrer, “KidSim: Programming Agents
Without a Programming Language,” Communications of the ACM, vol.
37, pp. 54-68, 1994.

[21] K. Schneider and A. Repenning, “Deceived by Ease of Use: Using
Paradigmatic Applications to Build Visual Design,” in Proceedings of
the 1995 Symposium on Designing Interactive Systems, Ann Arbor, MI,
1995, pp. 177-188.

[22] J. Gindling, A. Ioannidou, J. Loh, O. Lokkebo, and A. Repenning,
“LEGOsheets: A Rule-Based Programming, Simulation and
Manipulation Environment for the LEGO Programmable Brick,”
Proceedings of the 11th International IEEE Symposium on Visual
Languages, Darmstadt, Germany, 1995, 172-179.

[23] A. Repenning, “Bending Icons: Syntactic and Semantic Transformation
of Icons," in Proceedings of the 1994 IEEE Symposium on Visual
Languages, St. Louis, MO, 1994, pp. 296-303.

[24] A. Repenning and C. Perrone, “Programming by Analogous Examples,”
Communications of the ACM, vol. 43, pp. 90-97, 2000.

[25] B. Shneiderman, “Direct Manipulation: A Step Beyond Programming
Languages,” in Human-Computer Interaction: A multidisciplinary
approach, R. M. Baecker and W. A. S. Buxton, eds., Toronto: Morgan
Kaufmann Publishers, Inc., 1989, pp. 461-467.

[26] E. P. Glinert, “Towards "Second Generation" Interactive, Graphical
Programming Environments," in IEEE Computer Society Workshop on
Visual Languages, Dallas, 1986, pp. 61-70.

[27] A. Repenning and J. Ambach, “Tactile Programming: A Unified
Manipulation Paradigm Supporting Program Comprehension,
Composition and Sharing,” Proceedings of the 1996 IEEE Symposium of
Visual Languages, Boulder, CO, 1996, 102-109.

[28] B. Freudenberg, Y. Ohshima, and S. Wallace, “Etoys for One Laptop
Per Child,” in Proceedings of the 2009 Seventh international
Conference on Creating, Connecting and Collaborating Through
Computing, Kyoto, Japan, 2009, pp. 57-64.

[29] A. Kay, “Squeak Etoys, Children & Learning,” Viewpoints Research
Institute, VPRI Research Note RN-2005-001, 2005.

[30] M. Conway, S. Audia, T. Burnette, D. Cosgrove, K. Christiansen, R.
Deline, J. Durbin, R. Gossweiler, S. Koga, C. Long, B. Mallory, S.
Miale, K. Monkaitis, J. Patten, J. Pierce, J. Shochet, D. Staack, B.
Stearns, R. Stoakley, C. Sturgill, J. Viega, J. White, G. Williams, and R.
Pausch, “Alice: Lessons Learned from Building a 3D System For

Novices,” in Proceedings of the CHI 2000 Conference on Human
Factors in Computing Systems, The Hague, Netherlands, 2000, 486-493.

[31] M. Resnick, J. Maloney, A. Monroy-Hernánde, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y.
Kafai, “Scratch: Programming for All,” Communications of the ACM,
vol 52, no. 1, Nov, 2009, pp. 60-67

[32] A. Repenning, D. C. Webb, C. Brand, F. Gluck, R. Grover, S. Miller, H.
Nickerson, and M. Song, “Beyond Minecraft: Facilitating
Computational Thinking through Modeling and Programming in 3D,”
IEEE Computer Graphics and Applications, vol. 34, pp. 68-71, May-
June 2014.

[33] A. Ioannidou, A. Repenning, and D. Webb, “AgentCubes: Incremental
3D End-User Development,” Journal of Visual Language and
Computing, vol. 20, no. 4, Aug., 2019, pp. 236-251.

[34] A. Ioannidou, A. Repenning, and D. Webb, “Using Scalable Game
Design to Promote 3D Fluency: Assessing the AgentCubes Incremental
3D End-User Development Framework,” in Proceedings of the 2008
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC '08), Herrsching am Ammersee, Germany, 2008, 47-54.

[35] A. Repenning and A. Ioannidou, “AgentCubes: Raising the Ceiling of
End-User Development in Education through Incremental 3D,” in
Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing, Brighton, United Kingdom, 2006, pp. 27-34.

[36] A. Repenning, “Inflatable Icons: Diffusion-based Interactive Extrusion
of 2D Images into 3D Models,” The Journal of Graphical Tools, vol. 10,
pp. 1-15, 2005.

[37] A. Repenning, A. Basawapatna, and N. Escherle, “Computational
Thinking Tools,” presented at the IEEE Symposium on Visual
Languages and Human-Centric Computing, Cambridge, UK, 2016.

[38] W. F. Finzer and L. Gould, “Rehearsal world: programming by
rehearsal,” in [69], pp. 79-100.

[39] A. Repenning, A. Ioannidou, M. Rausch, and J. Phillips, “Using Agents
as a Currency of Exchange between End-Users,” in Proceedings of
]WebNET 98 World Conference of the WW, Internet, and Intranet,
Orlando, FL, 1998, pp. 762-767.

[40] A. Repenning and J. Ambach, “The Agentsheets Behavior Exchange:
Supporting Social Behavior Processing,” CHI '97 Extended Abstracts on
Human Factors in Computing Systems, Atlanta, Georgia, 1997, 26-27.

[41] C. Kelleher and R. Pausch, “Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice
programmers,” ACM Computing Surveys, vol. 37, no. 2, Jun, 2005, pp.
83-137, 2005.

[42] J. Trower and J. Gray, “Blockly Language Creation and Applications:
Visual Programming for Media Computation and Bluetooth Robotics
Control,” in Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, Kansas City, Missouri, USA, 2015, p. 5.

[43] H. Lieberman, “Dominoes and Storyboards: Beyond Icons on Strings,”
in Proceedings of the 1992 IEEE Workshop on Visual Languages, 1992,
pp. 65-71.

[44] M. Bienkowski, E. Snow, D. Rutstein, and S. Grover, “Assessment
Design Patterns for Computational Thinking Practices in Secondary
Computer Science: A First Look,” SRI International, 2015.

[45] K. Kyu Han, A. Basawapatna, H. Nickerson, and A. Repenning, “Real
Time Assessment of Computational Thinking,” presented at the Visual
Languages and Human-Centric Computing (VL/HCC), Melbourne,
2014, pp. 49-52.

[46] K. H. Koh, H. Nickerson, A. Basawapatna, and A. Repenning, “Early
validation of Computational Thinking Pattern Analysis,” in Proceedings
of the 2014 Conference on Innovation & Technology in Computer
Science Education (ITICSE), Uppsala, Sweden, 2014, pp. 213-218.

[47] K. H. K. Ashok Basawapatna, Alexander Repenning, David C. Webb,
Krista Sekeres Marshall, “Recognizing Computational Thinking
Patterns,” in Proceedings of the 42nd ACM Technical Symposium on
Computer Science Education (SIGCSE), Dallas, Texas, USA, 2011, pp.
245-250.

[48] K. H. Koh, A. Basawapatna, V. Bennett, and A. Repenning, “Towards
the Automatic Recognition of Computational Thinking for Adaptive
Visual Language Learning,” in Conference on Visual Languages and
Human Centric Computing (VL/HCC), Madrid, Spain, 2010, pp. 59-66.

[49] A. Basawapatna, A. Repenning, K. H. Koh, and M. Savignano, “The
Consume-Create Spectrum: Balancing Convenience and Computational
Thinking in STEM Learning,” in Proceedings of the 45th ACM
Technical Symposium on Computer Science Education (SIGCSE '14),
Atlanta, GA, USA, 2014, pp. 659-664.

[50] K. Howland and J. Good, “Learning to Communicate Computationally
with Flip: A Bi-modal Programming Language for Game Creation,”
Computers & Education, vol. 80, 2015, pp. 224-240.

[51] A. Repenning, D. C. Webb, K. H. Koh, H. Nickerson, S. B. Miller, C.
Brand, I. H. M. Horses, A. Basawapatna, F. Gluck, R. Grover, K.
Gutierrez, and N. Repenning, “Scalable Game Design: A Strategy to
Bring Systemic Computer Science Education to Schools through Game
Design and Simulation Creation,” Transactions on Computing
Education (TOCE), vol. 15, no. 2, Apr. 2015, pp. 1-31.

[52] K. H. Koh, A. Repenning, H. Nickerson, Y. Endo, and P. Motter, “Will
it Stick? Exploring the Sustainability of Computational Thinking
Education Through Game Design,” in Proceedings of the 44th ACM
Technical Symposium on Computer Science Education (SIGCSE '13),
Denver, Colorado, USA, 2013, pp. 597-602.

[53] S.-K. Chang, Principles of Visual Programming Systems. Englewood
Cliffs, NJ: Prentice Hall, 1990.

[54] I. E. Sutherland, “Sketchpad: A Man-machine Graphical Communi-
cation system,” in Proceedings of the SHARE design automation
workshop, 1964, pp. 6.329-6.346.

[55] W. R. Sutherland, “The On-line Specification of Computer Procedures,”
MIT, Department of Electrical Engineering, Ph.D. Thesis, 1966.

[56] T. O. Ellis, J. F. Heafner, and W. L. Sibley, “The Grail Project: An
Experiment in Man-Machine Communications,” RAND Corporation,
Memorandum RM-5999-ARPA, 1969.

[57] M. R. Minsky, “Manipulating Simulated Objects with Real-world
Gestures Using a Force and Position Sensitive screen,” Proceedings of
the 11th Annual Conference on Computer Graphics and Interactive
Techniques, Jan., 1984. pp. 195-203.

[58] E. P. Glinert and S. L. Tanimoto, “Pict: An Interactive Graphical
Programming Environment,” IEEE Computer, vol 17. no. 11, , pp. 265-
283, Nov. 1984.

[59] R. Lutze, “The Gestalt Analysis of Programs,” in Visualization in
Programming (Lecture Notes in Computer Science 282), P. Gorny and
M. J. Tauber, Eds., ed. Berlin: Springer-Verlag, 1986, pp. 24-36.

[60] V. Koushik and C. Lewis, "A Nonvisual Interface for a Blocks
Language,” presented at the Psychology of Programming Interest
Group, Cambridge, UK, 2016.

[61] S. Lerner, S. R. Foster, and W. G. Griswold, “Polymorphic Blocks:
Formalism-Inspired UI for Structured Connectors,” in Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing
Systems, Seoul, Republic of Korea, 2015, pp. 3063-3072.

[62] M. Vasek, “Representing expressive types in blocks programming
languages,” B.S., Wellesley College, Honors Thesis, Wellesley College,
2012.

[63] R. Perlman, “Using Computer Technology to Provide a Creative
Learning Environment for Preschool Children,” MIT, Computer Science
and Artificial Intelligence Lab (CSAIL), Artificial Intelligence Lab
Publications, Boston, MA 1976.

[64] J. J. Anderson, “ChipWits: Bet you Can't Build Just One,” Creative
Computing, pp. 76-79, 1985.

[65] A. Begel, “LogoBlocks: A Graphical Programming Language for
Interacting with the World,” Electrical Engineering and Computer
Science Department, MIT, Boston, MA, 1996.

[66] A. diSessa and H. Abelson, “Boxer: a Reconstructible Computational
Medium,” Communications of the ACM, vol. 29, no. 9, pp. 859 - 868.
Sep. 1986.

[67] K. M. Kahn and V. A. Saraswat, “Complete Visualizations of
Concurrent Programs and their Executions,” in Proceedings of the 1990
IEEE Workshop on Visual Languages, 1990, pp. 7-15.

[68] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, and M. Resnick,
“Scratch: A Sneak Preview,” in Second International Conference on
Creating, Connecting, and Collaborating through Computing, Kyoto,
Japan, 2004, pp. 104-109.

[69] A. Cypher (ed.), Watch What I Do: Programming by Demonstration.
Cambridge, MA: MIT Press, 1993.

[70] D. C. Halbert, “Programming by Example,” Xerox Office Systems
Division, Technical Report OSD-T8402, 1984.

[71] D. C. Smith, “PYGMALION: A Creative Programming Environment,”
Thesis. Stanford Artificial Intelligence Laboratory Memo, AIM 260,
Stanford University, 1975.

[72] P. T. Cox, F. R. Giles, and T. Pietrzykowski, “Prograph: a Step Towards
Liberating Programming from Textual Conditioning,” in IEEE
Workshop ib Visual Languages, 1989, pp. 150-156.

[73] J. Poswig, K. Teves, G. Vrankar, and C. Moraga, “VisaVis –
Contributions to Practice and Theory of Highly Interactive Visual
Languages,” in Proceedings of the IEEE Workshop on Visual
Languages, 1992, pp. 155-161.

[74] B. Nardi, A Small Matter of Programming. Cambridge, MA: MIT Press,
1993.

[75] D. D. Hils, “Datavis: a Visual Programming Language for Scientific
Visualization,” presented at the Proceedings of the 19th annual
Conference on Computer Science (CSC '91), San Antonio, Texas, USA,
1991, pp. 439-448.

[76] D. D. Hils, “Visual Languages and Computing Survey: Data Flow
Visual Programming Languages,” Journal of Visual Languages and
Computing, pp. 69-101, 1992.

[77] M. A. Najork and S. M. Kaplan, “The CUBE Languages,” in
Proceedings of the IEEE workshop on Visual Languages, 1991, pp. 218-
224.

[78] G. Fischer and A. C. Lemke, “Construction Kits and Design
Environments: Steps Toward Human Problem-Domain Communi-
cation,” Human-Computer Interaction, vol. 3, no. 3, pp. 179-222, 1988.

[79] C. Lombardi and M. Weksler, “Duo Ex Machina: Tinkering with
Sierra's The Incredible Machine,” Computer Gaming World, vol. 105,
pp. 52-52, 1993.

[80] M. S. El-Nasr and B. K. Smith. “Learning through game modding”.
Computers in Entertainment 7, 2006.

[81] E. Klopfer, H. Scheintaub, W. Huang, and D. Wendel, “StarLogo TNG,”
in Artificial Life Models in Software, M. Komosinski and A.
Adamatzky, eds., London: Springer, 2009, pp. 151-182.

[82] A. Repenning, A. Ioannidou, and J. Zola, “AgentSheets: End-User
Programmable Simulation,” Journal of Artificial Societies and Social
Simulation, vol. 3, 2000.

[83] A. Repenning and T. Sumner, “Agentsheets: A Medium for Creating
Domain-Oriented Visual Languages,” IEEE Computer, vol. 28, no. 3,
pp. 17-25, Mar. 1995.

[84] A. Repenning and W. Citrin, “Agentsheets: Applying Grid-Based
Spatial Reasoning to Human-Computer Interaction," in Proceedings of
the IEEE Workshop on Visual Languages, Bergen, Norway, 1993, pp.
77-82.

[85] A. Repenning, “Agentsheets: A Tool for Building Domain-Oriented
Visual Programming Environments,” in INTERCHI '93, Conference on
Human Factors in Computing Systems, Amsterdam, NL, 1993, pp. 142-
143.

[86] A. Repenning, D. Webb, and A. Ioannidou, “Scalable Game Design and
the Development of a Checklist for Getting Computational Thinking
into Public Schools,” in Proceedings of the 41st ACM Technical
Symposium on Computer Science Education (SIGCSE '10), Milwaukee,
WI, 2010, 265-269.

[87] N. Escherle, S. Ramirez-Ramirez, A. Basawapatna, D. Assaf, A.
Repenning, C. Maiello, Y. Endo, and J. Nolazco-Florez, “Piloting
Computer Science Education Week in Mexico,” in Proceedings of the
47th ACM Technical Symposium on Computer Science Education
(SIGCSE '16), Memphis, Tennessee, 2016, pp. 431-436.

[88] N. Escherle, D. Assaf, A. Basawapatna, C. Maiello, and A. Repenning,
“Launching Swiss Computer Science Education Week,” in Proceedings
of the 10th Workshop in Primary and Secondary Computing Education
(WIPSCE), London, U.K., 2015, pp. 11-16.

[89] C. DiGiano and M. Eisenberg, “Self-disclosing Design Tools: A
Gentle Introduction to End-User Programming,” in Proceedings of the
1st Conference on Designing Interactive Systems: Processes,

Practices, Methods, & Techniques (DIS '95), Ann Arbor, Michigan
USA, 1995, pp. 189-197.

[90] S. Turkle, Evocative Objects: Things We Think With. Cambridge,
USA: MIT Press, 2007.

[91] C. Rader, G. Cherry, C. Brand, A. Repenning, and C. Lewis,
“Principles to Scaffold Mixed Textual and Iconic End-User
Programming Languages,” in Proceedings of the 1998 IEEE
Symposium of Visual Languages, Nova Scotia, Canada, 1998, pp. 187-
194.

[92] S. Watt, “Syntonicity and the Psychology of Programming,” in
Proceedings of the Tenth Annual Meeting of the Psychology of
Programming Interest Group, Milton Keenes, UK, 1998, pp. 75-86.

[93] S. Papert, Mindstorms: Children, Computers and Powerful Ideas. New
York: Basic Books, 1980.

[94] R. D. Pea, “Chameleon in the Classroom: Developing Roles for
Computers, Logo Programming and Problem Solving,” presented at
the American Educational Research Association Symposium, Montreal,
Canada, 1983.

[95] H. Lieberman, “Steps Toward Better Debugging Tools for LISP,”
presented at the Proceedings of the 1984 ACM Symposium on LISP
and Functional Programming, Austin, Texas, USA, 1984, pp. 247-
255.

[96] S. McDirmid, “Usable Live Programming,” in Proceedings of the 2013
ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward! '13), Indianapolis,
Indiana, 2013, pp. 53-62.

[97] S. Burckhardt, M. Fahndrich, P. d. Halleux, S. McDirmid, M. Moskal,
N. Tillmann, and J. Kato, “It's Alive! Continuous Feedback in UI
Programming,” in Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI '13),
Washington, USA, 2013, pp. 95-104.

[98] S. McDirmid, “Living it Up with a Live Programming Language,” in
Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications (OOPLSA
'07), Montreal, Quebec, Canada, 2007, pp. 623-638.

[99] A. Repenning, “Conversational Programming: Exploring Interactive
Program Analysis,” in Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software (Onward! '13), Indianapolis, Indiana, USA,
2013, pp. 63-74.

[100] A. Repenning, “Making Programming more Conversational,” in IEEE
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Pittsburgh, PA, USA, 2011, pp. 191-194.

[101] M. Telles and Y. Hsieh, The Science of Debugging. Scottsdale:
Coriolis Group Books, Scottsdale AZ, USA, 2001.

[102] S. H. Cameron, D. Ewing, and M. Liveright, “DIALOG: a
Conversational Programming System with a Graphical Orientation,”
Communications of the ACM, vol. 10, pp. 349-357, 1967.

[103] A. Michotte, The Perception of Causality. Andover, MA: Methuen,
1962.

[104] J. M. Wing, “Computational Thinking," Communications of the ACM,
vol. 49, no. 3, pp. 33-35, Mar. 2006.

[105] C. Duncan and T. Bell, “A Pilot Computer Science and Programming
Course for Primary School Students,” in Proceedings of the Workshop
in Primary and Secondary Computing Education (WiPCSE '15),
London, United Kingdom, 2015, pp. 39-48.

[106] S. Papert, “An Exploration in the Space of Mathematics Educations,”
International Journal of Computers for Mathematical Learning, vol. 1,
pp. 95-123, 1996.

[107] S. Grover and R. Pea, “Computational Thinking in K–12: A Review of
the State of the Field,” Educational Researcher, vol. 42, pp. 38-43,
2013.

[108] J. M. Wing, “Computational Thinking Benefits Society,” in 40th
Anniversary Blog of Social Issues in Computing vol. 2014,
J. DiMarco, ed., University of Toronto, 2014 [Online.] http://
socialissues.cs.toronto.edu/2013/01/40th-anniversary/

[109] R. Arnheim, Visual Thinking. Berkley: University of California Press,
1969.

[110] B. J. Reiser, “Scaffolding Complex Learning: The Mechanisms of
Structuring and Problematizing Student Work,” Journal of the
Learning Sciences, vol. 13, no. 3, pp. 273–304, 2004.

[111] F. P. Brooks Jr., “No Silver Bullet: Essence and Accidents of Software
Engineering,” IEEE Computer, vol 20, no. 4. pp. 10-19, 1987.

[112] J. Monig, Y. Ohshima, and J. Maloney, “Blocks at Your Fingertips:
Blurring the Line between Blocks and Text in GP,” in IEEE Blocks
and Beyond Workshop, 2015, pp. 51-53.

[113] M. Guzdial, Learner-Centered “Design of Computing Education:
Research on Computing for Everyone,” Synthesis Lectures on Human-
Centered Informatics: Morgan & Claypool Publishers, 2015.

[114] G. Fischer, “Domain-Oriented Design Environments,” in Automated
Software Engineering. vol. 1, ed Boston, MA: Kluwer Academic
Publishers, 1994, pp. 177-203.

[115] C. Lewis and G. M. Olson, “Can Principles of Cognition Lower the
Barriers to Programming?,” in Empirical Studies of Programmers:
Second Workshop, Norwood, NJ, 1987, pp. 248-263.

[116] C. Lewis, “NoPumpG: Creating Interactive Graphics with Spreadsheet
Machinery,” Department of Computer Science, University of Colorado
at Boulder, Boulder, Colorado, Technical Report CU-CS-372-87,
August, 1987.

[117] A. Sweigart, Invent Your Own Computer Games with Python: A
Beginner's Guide to Computer Programming in Python, 2010.

[118] F. Hermans and E. Aivaloglou, “Do Code Smells Hamper Novice
Programming?,” Delft University of Technology, Software
Engineering Research Group, Delft University of Technology Report
TUD-SERG-2016-06, 2016.

[119] A. Repenning, “Collaborative Diffusion: Programming Antiobjects,” in
Companion to the 21st ACM SIGPLAN Symposium on Object-oriented
Programming Systems, Languages, and Applications (OOPSLA '06),
Portland, Oregon, 2006, pp. 574-585.

[120] A. Repenning, “Excuse me, I need better AI!: employing collaborative
diffusion to make game AI child's play,” in Proceedings of the 2006
ACM SIGGRAPH Symposium on Videogames (Sandbox '06), Boston,
Massachusetts, 2006, pp. 169-178.

